|
Helen M. E.
Duyvesteyn
,
Aiste
Dijokaite-Guraliuc
,
Chang
Liu
,
Piyada
Supasa
,
Barbara
Kronsteiner
,
Katie
Jeffery
,
Lizzie
Stafford
,
Paul
Klenerman
,
Susanna J.
Dunachie
,
Juthathip
Mongkolsapaya
,
Elizabeth
Fry
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Abstract: BA.2.87.1 represents a major shift in the BA.2 lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is unusual in having two lengthy deletions of polypeptide in the spike (S) protein, one of which removes a beta-strand. Here we investigate its neutralization by a variety of sera from infected and vaccinated individuals and determine its spike (S) ectodomain structure. The BA.2.87.1 receptor binding domain (RBD) is structurally conserved and the RBDs are tightly packed in an “all-down” conformation with a small rotation relative to the trimer axis as compared to the closest previously observed conformation. The N-terminal domain (NTD) maintains a remarkably similar structure overall; however, the rearrangements resulting from the deletions essentially destroy the so-called supersite epitope and eliminate one glycan site, while a mutation creates an additional glycan site, effectively shielding another NTD epitope. BA.2.87.1 is relatively easily neutralized but acquisition of additional mutations in the RBD could increase antibody escape allowing it to become a dominant sub-lineage.
|
Aug 2024
|
|
I03-Macromolecular Crystallography
|
Chang
Liu
,
Daming
Zhou
,
Aiste
Dijokaite-Guraliuc
,
Piyada
Supasa
,
Helen M. E.
Duyvesteyn
,
Helen M.
Ginn
,
Muneeswaran
Selvaraj
,
Alexander J.
Mentzer
,
Raksha
Das
,
Thushan I.
De Silva
,
Thomas G.
Ritter
,
Megan
Plowright
,
Thomas A.h.
Newman
,
Lizzie
Stafford
,
Barbara
Kronsteiner
,
Nigel
Temperton
,
Yuan
Lui
,
Martin
Fellermeyer
,
Philip
Goulder
,
Paul
Klenerman
,
Susanna J.
Dunachie
,
Michael I.
Barton
,
Mikhail A.
Kutuzov
,
Omer
Dushek
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[28534, 27009]
Open Access
Abstract: BA.2.86, a recently described sublineage of SARS-CoV-2 Omicron, contains many mutations in the spike gene. It appears to have originated from BA.2 and is distinct from the XBB variants responsible for many infections in 2023. The global spread and plethora of mutations in BA.2.86 has caused concern that it may possess greater immune-evasive potential, leading to a new wave of infection. Here, we examine the ability of BA.2.86 to evade the antibody response to infection using a panel of vaccinated or naturally infected sera and find that it shows marginally less immune evasion than XBB.1.5. We locate BA.2.86 in the antigenic landscape of recent variants and look at its ability to escape panels of potent monoclonal antibodies generated against contemporary SARS-CoV-2 infections. We demonstrate, and provide a structural explanation for, increased affinity of BA.2.86 to ACE2, which may increase transmissibility.
|
May 2024
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Chang
Liu
,
Raksha
Das
,
Aiste
Dijokaite-Guraliuc
,
Daming
Zhou
,
Alexander J.
Mentzer
,
Piyada
Supasa
,
Muneeswaran
Selvaraj
,
Helen M. E.
Duyvesteyn
,
Thomas G.
Ritter
,
Nigel
Temperton
,
Paul
Klenerman
,
Susanna J.
Dunachie
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Open Access
Abstract: The rapid evolution of SARS-CoV-2 is driven in part by a need to evade the antibody response in the face of high levels of immunity. Here, we isolate spike (S) binding monoclonal antibodies (mAbs) from vaccinees who suffered vaccine break-through infections with Omicron sub lineages BA.4 or BA.5. Twenty eight potent antibodies are isolated and characterised functionally, and in some cases structurally. Since the emergence of BA.4/5, SARS-CoV-2 has continued to accrue mutations in the S protein, to understand this we characterize neutralization of a large panel of variants and demonstrate a steady attrition of neutralization by the panel of BA.4/5 mAbs culminating in total loss of function with recent XBB.1.5.70 variants containing the so-called ‘FLip’ mutations at positions 455 and 456. Interestingly, activity of some mAbs is regained on the recently reported variant BA.2.86.
|
Apr 2024
|
|
|
Daming
Zhou
,
Piyada
Supasa
,
Chang
Liu
,
Aiste
Dijokaite-Guraliuc
,
Helen M. E.
Duyvesteyn
,
Muneeswaran
Selvaraj
,
Alexander J.
Mentzer
,
Raksha
Das
,
Wanwisa
Dejnirattisai
,
Nigel
Temperton
,
Paul
Klenerman
,
Susanna J.
Dunachie
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Open Access
Abstract: Under pressure from neutralising antibodies induced by vaccination or infection the SARS-CoV-2 spike gene has become a hotspot for evolutionary change, leading to the failure of all mAbs developed for clinical use. Most potent antibodies bind to the receptor binding domain which has become heavily mutated. Here we study responses to a conserved epitope in sub-domain-1 (SD1) of spike which have become more prominent because of mutational escape from antibodies directed to the receptor binding domain. Some SD1 reactive mAbs show potent and broad neutralization of SARS-CoV-2 variants. We structurally map the dominant SD1 epitope and provide a mechanism of action by blocking interaction with ACE2. Mutations in SD1 have not been sustained to date, but one, E554K, leads to escape from mAbs. This mutation has now emerged in several sublineages including BA.2.86, reflecting selection pressure on the virus exerted by the increasing prominence of the anti-SD1 response.
|
Mar 2024
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Aiste
Dijokaite-Guraliuc
,
Raksha
Das
,
Daming
Zhou
,
Helen M.
Ginn
,
Chang
Liu
,
Helen M. E.
Duyvesteyn
,
Jiandong
Huo
,
Rungtiwa
Nutalai
,
Piyada
Supasa
,
Muneeswaran
Selvaraj
,
Thushan I.
De Silva
,
Megan
Plowright
,
Thomas A. H.
Newman
,
Hailey
Hornsby
,
Alexander J.
Mentzer
,
Donal
Skelly
,
Thomas G.
Ritter
,
Nigel
Temperton
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Cornelius
Roemer
,
Thomas P.
Peacock
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: In November 2021 Omicron BA.1, containing a raft of new spike mutations emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or SARS-CoV-2 infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional RBD amino-acid substitutions compared to BA.2. We describe a panel of 25 potent mAbs generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titre of vaccine or BA.1, BA.2 or BA.4/5 immune serum.
|
Mar 2023
|
|
I03-Macromolecular Crystallography
|
Jiandong
Huo
,
Aiste
Dijokaite-Guraliuc
,
Chang
Liu
,
Raksha
Das
,
Piyada
Supasa
,
Muneeswaran
Selvaraj
,
Rungtiwa
Nutalai
,
Daming
Zhou
,
Alexander J.
Mentzer
,
Donal
Skelly
,
Thomas G.
Ritter
,
Ali
Amini
,
Sagida
Bibi
,
Sandra
Adele
,
Sile Ann
Johnson
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Megan
Plowright
,
Thomas A. H.
Newman
,
Hailey
Hornsby
,
Thushan I.
De Silva
,
Nigel
Temperton
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Andrew J.
Pollard
,
Teresa
Lambe
,
Philip
Goulder
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: Variants of SARS CoV-2 have caused successive global waves of infection. These variants, with multiple mutations in the spike protein are thought to facilitate escape from natural and vaccine-induced immunity and often increase in the affinity for ACE2. The latest variant to cause concern is BA.2.75, identified in India where it is now the dominant strain, with evidence of wider dissemination. BA.2.75 is derived from BA.2 and contains four additional mutations in the receptor binding domain (RBD). Here we perform an antigenic and biophysical characterization of BA.2.75, revealing an interesting balance between humoral evasion and ACE2 receptor affinity. ACE2 affinity for BA.2.75 is increased 9-fold compared to BA.2; there is also evidence of escape of BA.2.75 from immune serum, particularly that induced by Delta infection which may explain the rapid spread in India, where BA.2.75 is now the dominant variant. ACE2 affinity appears to be prioritised over greater escape.
|
Dec 2022
|
|
I03-Macromolecular Crystallography
|
Aiste
Dijokaite-Guraliuc
,
Raksha
Das
,
Rungtiwa
Nutalai
,
Daming
Zhou
,
Alexander J.
Mentzer
,
Chang
Liu
,
Piyada
Supasa
,
Susanna J.
Dunachie
,
Teresa
Lambe
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
Jiandong
Huo
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
|
Nov 2022
|
|
I03-Macromolecular Crystallography
|
Aekkachai
Tuekprakhon
,
Jiandong
Huo
,
Rungtiwa
Nutalai
,
Aiste
Dijokaite-Guraliuc
,
Daming
Zhou
,
Helen M.
Ginn
,
Muneeswaran
Selvaraj
,
Chang
Liu
,
Alexander J.
Mentzer
,
Piyada
Supasa
,
Helen M. E.
Duyvesteyn
,
Raksha
Das
,
Donal
Skelly
,
Thomas G.
Ritter
,
Ali
Amini
,
Sagida
Bibi
,
Sandra
Adele
,
Sile Ann
Johnson
,
Bede
Constantinides
,
Hermione
Webster
,
Nigel
Temperton
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Derrick
Crook
,
Andrew J.
Pollard
,
Teresa
Lambe
,
Philip
Goulder
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
,
Christopher
Conlon
,
Alexandra
Deeks
,
John
Frater
,
Lisa
Frending
,
Siobhan
Gardiner
,
Anni
Jämsén
,
Katie
Jeffery
,
Tom
Malone
,
Eloise
Phillips
,
Lucy
Rothwell
,
Lizzie
Stafford
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: The Omicron lineage of SARS-CoV-2, first described in November 2021, spread rapidly to become globally dominant and has split into a number of sub-lineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa’s Gauteng region uncovered two new sub-lineages, BA.4 and BA.5 which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences and, although closely related to BA.2, contain further mutations in the receptor binding domain of spike. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by serum from triple AstraZeneca or Pfizer vaccinated individuals compared to BA.1 and BA.2. Furthermore, using serum from BA.1 vaccine breakthrough infections there are likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.
|
Jun 2022
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
Krios I-Titan Krios I at Diamond
|
Rungtiwa
Nutalai
,
Daming
Zhou
,
Aekkachai
Tuekprakhon
,
Helen M.
Ginn
,
Piyada
Supasa
,
Chang
Liu
,
Jiandong
Huo
,
Alexander J.
Mentzer
,
Helen M. E.
Duyvesteyn
,
Aiste
Dijokaite-Guraliuc
,
Donal
Skelly
,
Thomas G.
Ritter
,
Ali
Amini
,
Sagida
Bibi
,
Sandra
Adele
,
Sile Ann
Johnson
,
Bede
Constantinides
,
Hermione
Webster
,
Nigel
Temperton
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Derrick
Crook
,
Andrew J.
Pollard
,
Teresa
Lambe
,
Philip
Goulder
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Juthathip
Mongkolsapaya
,
Elizabeth E.
Fry
,
Wanwisa
Dejnirattisai
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
,
Christopher
Conlon
,
Alexandra
Deeks
,
John
Frater
,
Lisa
Frending
,
Siobhan
Gardiner
,
Anni
Jämsén
,
Katie
Jeffery
,
Tom
Malone
,
Eloise
Phillips
,
Lucy
Rothwell
,
Lizzie
Stafford
Diamond Proposal Number(s):
[27009, 26983]
Open Access
Abstract: Highly transmissible Omicron variants of SARS-CoV-2 currently dominate globally. Here, we compare neutralization of Omicron BA.1, BA.1.1 and BA.2. BA.2 RBD has slightly higher ACE2 affinity than BA.1 and slightly reduced neutralization by vaccine serum, possibly associated with its increased transmissibility. Neutralization differences between sub-lineages for mAbs (including therapeutics) mostly arise from variation in residues bordering the ACE2 binding site, however, more distant mutations S371F (BA.2) and R346K (BA.1.1) markedly reduce neutralization by therapeutic antibody Vir-S309. In-depth structure-and-function analyses of 27 potent RBD-binding mAbs isolated from vaccinated volunteers following breakthrough Omicron-BA.1 infection reveals that they are focussed in two main clusters within the RBD, with potent right-shoulder antibodies showing increased prevalence. Selection and somatic maturation have optimized antibody potency in less-mutated epitopes and recovered potency in highly mutated epitopes. All 27 mAbs potently neutralize early pandemic strains and many show broad reactivity with variants of concern.
|
May 2022
|
|