I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Maurice
Michel
,
Carlos
Benítez-Buelga
,
Patricia A.
Calvo
,
Bishoy M. F.
Hanna
,
Oliver
Mortusewicz
,
Geoffrey
Masuyer
,
Jonathan
Davies
,
Olov
Wallner
,
Sanjiv
Kumar
,
Julian J.
Albers
,
Sergio
Castañeda-Zegarra
,
Ann-Sofie
Jemth
,
Torkild
Visnes
,
Ana
Sastre-Perona
,
Akhilesh N.
Danda
,
Evert J.
Homan
,
Karthick
Marimuthu
,
Zhao
Zhenjun
,
Celestine N.
Chi
,
Antonio
Sarno
,
Elisée
Wiita
,
Catharina
Von Nicolai
,
Anna J.
Komor
,
Varshni
Rajagopal
,
Sarah
Müller
,
Emily C.
Hank
,
Marek
Varga
,
Emma R.
Scaletti
,
Monica
Pandey
,
Stella
Karsten
,
Hanne
Haslene-Hox
,
Simon
Loevenich
,
Petra
Marttila
,
Azita
Rasti
,
Kirill
Mamonov
,
Florian
Ortis
,
Fritz
Schömberg
,
Olga
Loseva
,
Josephine
Stewart
,
Nicholas
D’arcy-Evans
,
Tobias
Koolmeister
,
Martin
Henriksson
,
Dana
Michel
,
Ana
De Ory
,
Lucia
Acero
,
Oriol
Calvete
,
Martin
Scobie
,
Christian
Hertweck
,
Ivan
Vilotijevic
,
Christina
Kalderén
,
Ana
Osorio
,
Rosario
Perona
,
Alexandra
Stolz
,
Pal
Stenmark
,
Ulrika
Warpman Berglund
,
Miguel
De Vega
,
Thomas
Helleday
Diamond Proposal Number(s):
[15806, 21625]
Abstract: Oxidative DNA damage is recognized by 8-oxoguanine (8-oxoG) DNA glycosylase 1 (OGG1), which excises 8-oxoG, leaving a substrate for apurinic endonuclease 1 (APE1) and initiating repair. Here, we describe a small molecule (TH10785) that interacts with the phenylalanine-319 and glycine-42 amino acids of OGG1, increases the enzyme activity 10-fold, and generates a previously undescribed β,δ-lyase enzymatic function. TH10785 controls the catalytic activity mediated by a nitrogen base within its molecular structure. In cells, TH10785 increases OGG1 recruitment to and repair of oxidative DNA damage. This alters the repair process, which no longer requires APE1 but instead is dependent on polynucleotide kinase phosphatase (PNKP1) activity. The increased repair of oxidative DNA lesions with a small molecule may have therapeutic applications in various diseases and aging.
|
Jun 2022
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Nadilly
Bonagas
,
Nina M. S.
Gustafsson
,
Martin
Henriksson
,
Petra
Marttila
,
Robert
Gustafsson
,
Elisée
Wiita
,
Sanjay
Borhade
,
Alanna C.
Green
,
Karl S. A.
Vallin
,
Antonio
Sarno
,
Richard
Svensson
,
Camilla
Göktürk
,
Therese
Pham
,
Ann-Sofie
Jemth
,
Olga
Loseva
,
Victoria
Cookson
,
Nicole
Kiweler
,
Lars
Sandberg
,
Azita
Rasti
,
Judith E.
Unterlass
,
Martin
Haraldsson
,
Yasmin
Andersson
,
Emma R.
Scaletti
,
Christoffer
Bengtsson
,
Cynthia B. J.
Paulin
,
Kumar
Sanjiv
,
Eldar
Abdurakhmanov
,
Linda
Pudelko
,
Ben
Kunz
,
Matthieu
Desroses
,
Petar
Iliev
,
Katarina
Färnegårdh
,
Andreas
Krämer
,
Neeraj
Garg
,
Maurice
Michel
,
Sara
Häggblad
,
Malin
Jarvius
,
Christina
Kalderén
,
Amanda Bögedahl
Jensen
,
Ingrid
Almlöf
,
Stella
Karsten
,
Si Min
Zhang
,
Maria
Häggblad
,
Anders
Eriksson
,
Jianping
Liu
,
Björn
Glinghammar
,
Natalia
Nekhotiaeva
,
Fredrik
Klingegård
,
Tobias
Koolmeister
,
Ulf
Martens
,
Sabin
Llona-Minguez
,
Ruth
Moulson
,
Helena
Nordström
,
Vendela
Parrow
,
Leif
Dahllund
,
Birger
Sjöberg
,
Irene L.
Vargas
,
Duy Duc
Vo
,
Johan
Wannberg
,
Stefan
Knapp
,
Hans E.
Krokan
,
Per I.
Arvidsson
,
Martin
Scobie
,
Johannes
Meiser
,
Pal
Stenmark
,
Ulrika Warpman
Berglund
,
Evert J.
Homan
,
Thomas
Helleday
Open Access
Abstract: The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors.
|
Feb 2022
|
|
|
Susanne
Müller
,
Suzanne
Ackloo
,
Arij
Al Chawaf
,
Bissan
Al-Lazikani
,
Albert
Antolin
,
Jonathan B.
Baell
,
Hartmut
Beck
,
Shaunna
Beedie
,
Ulrich A. K.
Betz
,
Gustavo
Arruda Bezerra
,
Paul E.
Brennan
,
David
Brown
,
Peter J.
Brown
,
Alex N.
Bullock
,
Adrian J.
Carter
,
Apirat
Chaikuad
,
Mathilde
Chaineau
,
Alessio
Ciulli
,
Ian
Collins
,
Jan
Dreher
,
David
Drewry
,
Kristina
Edfeldt
,
Aled M.
Edwards
,
Ursula
Egner
,
Stephen V.
Frye
,
Stephen M.
Fuchs
,
Matthew D.
Hall
,
Ingo V.
Hartung
,
Alexander
Hillisch
,
Stephen H.
Hitchcock
,
Evert
Homan
,
Natarajan
Kannan
,
James R.
Kiefer
,
Stefan
Knapp
,
Milka
Kostic
,
Stefan
Kubicek
,
Andrew S.
Leach
,
Sven
Lindemann
,
Brian D.
Marsden
,
Hisanori
Matsui
,
Jordan L.
Meier
,
Daniel
Merk
,
Maurice
Michel
,
Maxwell R.
Morgan
,
Anke
Mueller-Fahrnow
,
Dafydd R.
Owen
,
Benjamin G.
Perry
,
Saul H.
Rosenberg
,
Kumar Singh
Saikatendu
,
Matthieu
Schapira
,
Cora
Scholten
,
Sujata
Sharma
,
Anton
Simeonov
,
Michael
Sundström
,
Giulio
Superti-Furga
,
Matthew H.
Todd
,
Claudia
Tredup
,
Masoud
Vedadi
,
Frank
Von Delft
,
Timothy M.
Willson
,
Georg E.
Winter
,
Paul
Workman
,
Cheryl H.
Arrowsmith
Open Access
Abstract: Twenty years after the publication of the first draft of the human genome, our knowledge of the human proteome is still fragmented. The challenge of translating the wealth of new knowledge from genomics into new medicines is that proteins, and not genes, are the primary executers of biological function. Therefore, much of how biology works in health and disease must be understood through the lens of protein function. Accordingly, a subset of human proteins has been at the heart of research interests of scientists over the centuries, and we have accumulated varying degrees of knowledge about approximately 65% of the human proteome. Nevertheless, a large proportion of proteins in the human proteome (∼35%) remains uncharacterized, and less than 5% of the human proteome has been successfully targeted for drug discovery. This highlights the profound disconnect between our abilities to obtain genetic information and subsequent development of effective medicines. Target 2035 is an international federation of biomedical scientists from the public and private sectors, which aims to address this gap by developing and applying new technologies to create by year 2035 chemogenomic libraries, chemical probes, and/or biological probes for the entire human proteome.
|
Dec 2021
|
|
I24-Microfocus Macromolecular Crystallography
|
Daniel
Rehling
,
Si Min
Zhang
,
Ann-Sofie
Jemth
,
Tobias
Koolmeister
,
Adam
Throup
,
Olov
Wallner
,
Emma
Scaletti
,
Takaya
Moriyama
,
Rina
Nishii
,
Jonathan
Davies
,
Matthieu
Desroses
,
Sean G.
Rudd
,
Martin
Scobie
,
Evert
Homan
,
Ulrika Warpman
Berglund
,
Jun J.
Yang
,
Thomas
Helleday
,
Pal
Stenmark
Diamond Proposal Number(s):
[21625]
Open Access
Abstract: The enzyme NUDT15 efficiently hydrolyses the active metabolites of thiopurine drugs, which are routinely used for treating cancer and inflammatory diseases. Loss-of-function variants in NUDT15 are strongly associated with thiopurine intolerance, such as leukopenia, and pre-emptive NUDT15 genotyping has been clinically implemented to personalize thiopurine dosing. However, understanding the molecular consequences of these variants has been difficult, as no structural information was available for NUDT15 proteins encoded by clinically actionable pharmacogenetic variants due to their inherent instability. Recently, the small molecule NUDT15 inhibitor TH1760 has been shown to sensitize cells to thiopurines, through enhanced accumulation of 6-thio-guanine in DNA. Building upon this, we herein report the development of the potent and specific NUDT15 inhibitor, TH7755. TH7755 demonstrates a greatly improved cellular target engagement and 6-thioguanine potentiation compared to TH1760, while showing no cytotoxicity on its own. This potent inhibitor also stabilized NUDT15, enabling analysis by X-ray crystallography. We have determined high-resolution structures of the clinically relevant NUDT15 variants Arg139Cys, Arg139His, Val18Ile and V18_V19insGlyVal. These structures provide clear insights into the structural basis for the thiopurine intolerance phenotype observed in patients carrying these pharmacogenetic variants. These findings will aid in predicting the effects of new NUDT15 sequence variations yet to be discovered in the clinic.
|
Mar 2021
|
|
I04-Macromolecular Crystallography
|
Torkild
Visnes
,
Carlos
Benítez-Buelga
,
Armando
Cázares-Körner
,
Kumar
Sanjiv
,
Bishoy M. F.
Hanna
,
Oliver
Mortusewicz
,
Varshni
Rajagopal
,
Julian J.
Albers
,
Daniel W
Hagey
,
Tove
Bekkhus
,
Saeed
Eshtad
,
Juan Miguel
Baquero
,
Geoffrey
Masuyer
,
Olov
Wallner
,
Sarah
Müller
,
Therese
Pham
,
Camilla
Göktürk
,
Azita
Rasti
,
Sharda
Suman
,
Raúl
Torres-Ruiz
,
Antonio
Sarno
,
Elisée
Wiita
,
Evert J.
Homan
,
Stella
Karsten
,
Karthick
Marimuthu
,
Maurice
Michel
,
Tobias
Koolmeister
,
Martin
Scobie
,
Olga
Loseva
,
Ingrid
Almlöf
,
Judith Edda
Unterlass
,
Aleksandra
Pettke
,
Johan
Boström
,
Monica
Pandey
,
Helge
Gad
,
Patrick
Herr
,
Ann-Sofie
Jemth
,
Samir
El andaloussi
,
Christina
Kalderén
,
Sandra
Rodriguez-Perales
,
Javier
Benítez
,
Hans E
Krokan
,
Mikael
Altun
,
Pal
Stenmark
,
Ulrika Warpman
Berglund
,
Thomas
Helleday
Diamond Proposal Number(s):
[15806]
Open Access
Abstract: Altered oncogene expression in cancer cells causes loss of redox homeostasis resulting in oxidative DNA damage, e.g. 8-oxoguanine (8-oxoG), repaired by base excision repair (BER). PARP1 coordinates BER and relies on the upstream 8-oxoguanine-DNA glycosylase (OGG1) to recognise and excise 8-oxoG. Here we hypothesize that OGG1 may represent an attractive target to exploit reactive oxygen species (ROS) elevation in cancer. Although OGG1 depletion is well tolerated in non-transformed cells, we report here that OGG1 depletion obstructs A3 T-cell lymphoblastic acute leukemia growth in vitro and in vivo, validating OGG1 as a potential anti-cancer target. In line with this hypothesis, we show that OGG1 inhibitors (OGG1i) target a wide range of cancer cells, with a favourable therapeutic index compared to non-transformed cells. Mechanistically, OGG1i and shRNA depletion cause S-phase DNA damage, replication stress and proliferation arrest or cell death, representing a novel mechanistic approach to target cancer. This study adds OGG1 to the list of BER factors, e.g. PARP1, as potential targets for cancer treatment.
|
Nov 2020
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[15806]
Open Access
Abstract: The bifunctional human enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) catalyzes two essential steps in the de novo purine biosynthesis pathway. PAICS is overexpressed in many cancers and could be a promising target for the development of cancer therapeutics. Here, using gene knockdowns and clonogenic survival and cell viability assays, we demonstrate that PAICS is required for growth and survival of prostate cancer cells. PAICS catalyzes the carboxylation of aminoimidazole ribonucleotide (AIR) and the subsequent conversion of carboxyaminoimidazole ribonucleotide (CAIR) and L-aspartate to N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR). Of note, we present the first structures of human octameric PAICS in complexes with native ligands. In particular, we report the structure of PAICS with CAIR bound in the active sites of both domains and SAICAR bound in one of the SAICAR synthetase domains. Moreover, we report the PAICS structure with SAICAR and an ATP analog occupying the SAICAR synthetase active site. These structures provide insight into substrate and product binding and the architecture of the active sites, disclosing important structural information for rational design of PAICS inhibitors as potential anticancer drugs.
|
Jun 2020
|
|
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Torkild
Visnes
,
Armando
Cázares-Körner
,
Wenjing
Hao
,
Olov
Wallner
,
Geoffrey
Masuyer
,
Olga
Loseva
,
Oliver
Mortusewicz
,
Elisée
Wiita
,
Antonio
Sarno
,
Aleksandr
Manoilov
,
Juan
Astorga-Wells
,
Ann-Sofie
Jemth
,
Lang
Pan
,
Kumar
Sanjiv
,
Stella
Karsten
,
Camilla
Gokturk
,
Maurice
Grube
,
Evert J.
Homan
,
Bishoy M. F.
Hanna
,
Cynthia B. J.
Paulin
,
Therese
Pham
,
Azita
Rasti
,
Ulrika Warpman
Berglund
,
Catharina
Von Nicolai
,
Carlos
Benitez-Buelga
,
Tobias
Koolmeister
,
Dag
Ivanic
,
Petar
Iliev
,
Martin
Scobie
,
Hans E.
Krokan
,
Pawel
Baranczewski
,
Per
Artursson
,
Mikael
Altun
,
Annika Jenmalm
Jensen
,
Christina
Kalderén
,
Xueqing
Ba
,
Roman A.
Zubarev
,
Pal
Stenmark
,
Istvan
Boldogh
,
Thomas
Helleday
Diamond Proposal Number(s):
[15806]
Abstract: The onset of inflammation is associated with reactive oxygen species and oxidative damage to macromolecules like 7,8-dihydro-8-oxoguanine (8-oxoG) in DNA. Because 8-oxoguanine DNA glycosylase 1 (OGG1) binds 8-oxoG and because Ogg1-deficient mice are resistant to acute and systemic inflammation, we hypothesized that OGG1 inhibition may represent a strategy for the prevention and treatment of inflammation. We developed TH5487, a selective active-site inhibitor of OGG1, which hampers OGG1 binding to and repair of 8-oxoG and which is well tolerated by mice. TH5487 prevents tumor necrosis factor–α–induced OGG1-DNA interactions at guanine-rich promoters of proinflammatory genes. This, in turn, decreases DNA occupancy of nuclear factor κB and proinflammatory gene expression, resulting in decreased immune cell recruitment to mouse lungs. Thus, we present a proof of concept that targeting oxidative DNA repair can alleviate inflammatory conditions in vivo.
|
Nov 2018
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Ann-Sofie
Jemth
,
Robert
Gustafsson
,
Lars
Bräutigam
,
Linda
Henriksson
,
Karl S. A.
Vallin
,
Antonio
Sarno
,
Ingrid
Almlöf
,
Evert
Homan
,
Azita
Rasti
,
Ulrika
Warpman berglund
,
Pal
Stenmark
,
Thomas
Helleday
Diamond Proposal Number(s):
[11265]
Open Access
Abstract: Nucleotides in the free pool are more susceptible to nonenzymatic methylation than those protected in the DNA double helix. Methylated nucleotides like O6-methyl-dGTP can be mutagenic and toxic if incorporated into DNA. Removal of methylated nucleotides from the nucleotide pool may therefore be important to maintain genome integrity. We show that MutT homologue 1 (MTH1) efficiently catalyzes the hydrolysis of O6-methyl-dGTP with a catalytic efficiency similar to that for 8-oxo-dGTP. O6-methyl-dGTP activity is exclusive to MTH1 among human NUDIX proteins and conserved through evolution but not found in bacterial MutT. We present a high resolution crystal structure of human and zebrafish MTH1 in complex with O6-methyl-dGMP. By microinjecting fertilized zebrafish eggs with O6-methyl-dGTP and inhibiting MTH1 we demonstrate that survival is dependent on active MTH1 in vivo. O6-methyl-dG levels are higher in DNA extracted from zebrafish embryos microinjected with O6-methyl-dGTP and inhibition of O6-methylguanine-DNA methyl transferase (MGMT) increases the toxicity of O6-methyl-dGTP demonstrating that O6-methyl-dGTP is incorporated into DNA. MTH1 deficiency sensitizes human cells to the alkylating agent Temozolomide, a sensitization that is more pronounced upon MGMT inhibition. These results expand the cellular MTH1 function and suggests MTH1 also is important for removal of methylated nucleotides from the nucleotide pool.
|
Oct 2018
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[11265]
Abstract: Fragment-based lead discovery has emerged as a leading drug development strategy for novel therapeutic targets. Despite that fragment-based drug discovery benefits immensely from access to atomic-resolution information, structure-based virtual screening has rarely been used to drive fragment discovery and optimization. Here, molecular docking of 0.3 million fragments to a crystal structure of cancer target MTH1 was performed. Twenty-two predicted fragment ligands, for which analogs could be acquired commercially, were experimentally evaluated. Five fragments inhibited MTH1 with IC50 values ranging from 6 to 79 μM. Structure-based optimization guided by predicted binding modes and analogs from commercial chemical libraries yielded nanomolar inhibitors. Subsequently solved crystal structures confirmed binding modes predicted by docking for three scaffolds. Structure-guided exploration of commercial chemical space using molecular docking gives access to fragment libraries that are several orders of magnitude larger than those screened experimentally and can enable efficient optimization of hits to potent leads.
|
Sep 2017
|
|