I06-Nanoscience
|
Andrea
Ronchi
,
Paolo
Franceschini
,
Andrea
De Poli
,
Pia
Homm
,
Ann
Fitzpatrick
,
Francesco
Maccherozzi
,
Gabriele
Ferrini
,
Francesco
Banfi
,
Sarnjeet S.
Dhesi
,
Mariela
Menghini
,
Michele
Fabrizio
,
Jean-Pierre
Locquet
,
Claudio
Giannetti
Diamond Proposal Number(s):
[18897, 21700]
Open Access
Abstract: Mott transitions in real materials are first order and almost always associated with lattice distortions, both features promoting the emergence of nanotextured phases. This nanoscale self-organization creates spatially inhomogeneous regions, which can host and protect transient non-thermal electronic and lattice states triggered by light excitation. Here, we combine time-resolved X-ray microscopy with a Landau-Ginzburg functional approach for calculating the strain and electronic real-space configurations. We investigate V2O3, the archetypal Mott insulator in which nanoscale self-organization already exists in the low-temperature monoclinic phase and strongly affects the transition towards the high-temperature corundum metallic phase. Our joint experimental-theoretical approach uncovers a remarkable out-of-equilibrium phenomenon: the photo-induced stabilisation of the long sought monoclinic metal phase, which is absent at equilibrium and in homogeneous materials, but emerges as a metastable state solely when light excitation is combined with the underlying nanotexture of the monoclinic lattice.
|
Jun 2022
|
|
I06-Nanoscience
|
Diamond Proposal Number(s):
[19060]
Open Access
Abstract: The authors describe and compare two complementary techniques that are habitually used to image ferromagnetic and ferroelectric materials with sub-micron spatial resolutions (typically 50 nm, at best 10 nm). The first technique is variable-temperature photoemission electron microscopy with magnetic/antiferromagnetic/polar contrast from circularly/linearly polarized incident X-rays (XPEEM). The second technique is magnetic force microscopy (MFM). Focusing mainly on the authors’ own work, but not exclusively, published/unpublished XPEEM and MFM images of ferroic domains and complex magnetic textures (involving vortices and phase separation) are presented. Highlights include the use of two XPEEM images to create 2D vector maps of in-plane (IP) magnetization, and the use of imaging to detect electrically driven local reversals of magnetization. The brief and simple descriptions of XPEEM and MFM should be useful for beginners seeking to employ these techniques in order to understand and harness ferroic materials.
|
May 2022
|
|
I06-Nanoscience
|
G.
Awana
,
R.
Fujita
,
A.
Frisk
,
P.
Chen
,
Q.
Yao
,
A. J.
Caruana
,
C. J.
Kinane
,
N.-J.
Steinke
,
S.
Langridge
,
P.
Olalde-Velasco
,
S. S.
Dhesi
,
G.
Van Der Laan
,
X. F.
Kou
,
S. L.
Zhang
,
T.
Hesjedal
,
D.
Backes
Diamond Proposal Number(s):
[23748]
Open Access
Abstract: An elegant approach to overcome the intrinsic limitations of magnetically doped topological insulators is to bring a topological insulator in direct contact with a magnetic material. The aspiration is to realize the quantum anomalous Hall effect at high temperatures where the symmetry-breaking magnetic field is provided by a proximity-induced magnetization at the interface. Hence, a detailed understanding of the interfacial magnetism in such heterostructures is crucial, yet its distinction from structural and magnetic background effects is a rather nontrivial task. Here, we combine several magnetic characterization techniques to investigate the magnetic ordering in
MnTe
/
Bi
2
Te
3
heterostructures. A magnetization profile of the layer stack is obtained using depth-sensitive polarized neutron reflectometry. The magnetic constituents are characterized in more detail using element-sensitive magnetic x-ray spectroscopy. Magnetotransport measurements provide additional information about the magnetic transitions. We find that the supposedly antiferromagnetic MnTe layer does not exhibit an x-ray magnetic linear dichroic signal, raising doubt that it is in its antiferromagnetic state. Instead, Mn seems to penetrate into the surface region of the
Bi
2
Te
3
layer. Furthermore, the interface between MnTe and
Bi
2
Te
3
is not abrupt, but extending over
∼
2.2
nm. These conditions are the likely reason that we do not observe proximity-induced magnetization at the interface. Our findings illustrate the importance of not solely relying on one single technique as proof for proximity-induced magnetism at interfaces. We demonstrate that a holistic, multitechnique approach is essential to gain a more complete picture of the magnetic structure in which the interface is embedded.
|
May 2022
|
|
I06-Nanoscience
|
Filip
Krizek
,
Sonka
Reimers
,
Zdeněk
Kašpar
,
Alberto
Marmodoro
,
Jan
Michalička
,
Ondřej
Man
,
Alexander
Edström
,
Oliver J.
Amin
,
Kevin W.
Edmonds
,
Richard P.
Campion
,
Francesco
Maccherozzi
,
Sarnjeet S.
Dhesi
,
Jan
Zubáč
,
Domink
Kriegner
,
Dina
Carbone
,
Jakub
Železný
,
Karel
Výborný
,
Kamil
Olejník
,
Vít
Novák
,
Jan
Rusz
,
Juan-Carlos
Idrobo
,
Peter
Wadley
,
Tomas
Jungwirth
Diamond Proposal Number(s):
[22437]
Open Access
Abstract: The interest in understanding scaling limits of magnetic textures such as domain walls spans the entire field of magnetism from its physical fundamentals to applications in information technologies. Here, we explore antiferromagnetic CuMnAs in which imaging by x-ray photoemission reveals the presence of magnetic textures down to nanoscale, reaching the detection limit of this established microscopy in antiferromagnets. We achieve atomic resolution by using differential phase-contrast imaging within aberration-corrected scanning transmission electron microscopy. We identify abrupt domain walls in the antiferromagnetic film corresponding to the Néel order reversal between two neighboring atomic planes. Our work stimulates research of magnetic textures at the ultimate atomic scale and sheds light on electrical and ultrafast optical antiferromagnetic devices with magnetic field–insensitive neuromorphic functionalities.
|
Apr 2022
|
|
I06-Nanoscience
|
Dong
Li
,
Bonan
Zhu
,
Dirk
Backes
,
Larissa S. I.
Veiga
,
Tien-Lin
Lee
,
Hongguang
Wang
,
Qian
He
,
Pinku
Roy
,
Jiaye
Zhang
,
Jueli
Shi
,
Aiping
Chen
,
Peter A.
Van Aken
,
Quanxi
Jia
,
Sarnjeet S.
Dhesi
,
David O.
Scanlon
,
Kelvin H. L.
Zhang
,
Weiwei
Li
Diamond Proposal Number(s):
[25425, 26901, 29616]
Abstract: Strain engineering of epitaxial transition metal oxide heterostructures offers an intriguing opportunity to control electronic structures by modifying the interplay between spin, charge, orbital, and lattice degrees of freedom. Here, we demonstrate that the electronic structure, magnetic and transport properties of
La
0.9
Ba
0.1
MnO
3
thin films can be effectively controlled by epitaxial strain. Spectroscopic studies and first-principles calculations reveal that the orbital occupancy in Mn
e
g
orbitals can be switched from the
d
3
z
2
−
r
2
orbital to the
d
x
2
−
y
2
orbital by varying the strain from compressive to tensile. The change of orbital occupancy associated with Mn
3
d
-O
2
p
hybridization leads to dramatic modulation of the magnetic and electronic properties of strained
La
0.9
Ba
0.1
MnO
3
thin films. Under moderate tensile strain, an emergent ferromagnetic insulating state with an enhanced ferromagnetic Curie temperature of 215 K is achieved. These findings not only deepen our understanding of electronic structures, magnetic and transport properties in the
La
0.9
Ba
0.1
MnO
3
system, but also demonstrate the use of epitaxial strain as an effective knob to tune the electronic structures and related physical properties for potential spintronic device applications.
|
Apr 2022
|
|
I06-Nanoscience
|
X.
Gu
,
C.
Chen
,
W. S.
Wei
,
L. L.
Gao
,
J. Y.
Liu
,
X.
Du
,
D.
Pei
,
J. S.
Zhou
,
R. Z.
Xu
,
Z. X.
Yin
,
W. X.
Zhao
,
Y. D.
Li
,
C.
Jozwiak
,
A.
Bostwick
,
E.
Rotenberg
,
D.
Backes
,
L. S. I.
Veiga
,
S.
Dhesi
,
T.
Hesjedal
,
G.
Van Der Laan
,
H. F.
Du
,
W. J.
Jiang
,
Y. P.
Qi
,
G.
Li
,
W. J.
Shi
,
Z. K.
Liu
,
Y. L.
Chen
,
L. X.
Yang
Diamond Proposal Number(s):
[27482]
Abstract: Crystal geometry can greatly influence the emergent properties of quantum materials. As an example, the kagome lattice is an ideal platform to study the rich interplay between topology, magnetism, and electronic correlation. In this work, combining high-resolution angle-resolved photoemission spectroscopy and ab initio calculation, we systematically investigate the electronic structure of
X
Mn
6
Sn
6
(
X
=
Dy
,
Tb
,
Gd
,
Y
)
family compounds. We observe the Dirac fermion and the flat band arising from the magnetic kagome lattice of Mn atoms. Interestingly, the flat band locates in the same energy region in all compounds studied, regardless of their different magnetic ground states and
4
f
electronic configurations. These observations suggest a robust Mn magnetic kagome lattice across the
X
Mn
6
Sn
6
family, thus providing an ideal platform for the search for, and investigation of, new emergent phenomena in magnetic topological materials.
|
Apr 2022
|
|
|
Cyril
Leveille
,
Erick
Burgos-Parra
,
Yanis
Sassi
,
Fernando
Ajejas
,
Valentin
Chardonnet
,
Emanuele
Pedersoli
,
Flavio
Capotondi
,
Giovanni
De Ninno
,
Francesco
Maccherozzi
,
Sarnjeet
Dhesi
,
David M.
Burn
,
Gerrit
Van Der Laan
,
Oliver S.
Latcham
,
Andrey V.
Shytov
,
Volodymyr V.
Kruglyak
,
Emmanuelle
Jal
,
Vincent
Cros
,
Jean-Yves
Chauleau
,
Nicolas
Reyren
,
Michel
Viret
,
Nicolas
Jaouen
Open Access
Abstract: Non-collinear spin textures in ferromagnetic ultrathin films are attracting a renewed interest fueled by possible fine engineering of several magnetic interactions, notably the interfacial Dzyaloshinskii-Moriya interaction. This allows for the stabilization of complex chiral spin textures such as chiral magnetic domain walls (DWs), spin spirals, and magnetic skyrmions among others. We report here on the behavior of chiral DWs at ultrashort timescale after optical pumping in perpendicularly magnetized asymmetric multilayers. The magnetization dynamics is probed using time-resolved circular dichroism in x-ray resonant magnetic scattering (CD-XRMS). We observe a picosecond transient reduction of the CD-XRMS, which is attributed to the spin current-induced coherent and incoherent torques within the continuously varying spin texture of the DWs. We argue that a specific demagnetization of the inner structure of the DW induces a flow of spins from the interior of the neighboring magnetic domains. We identify this time-varying change of the DW texture shortly after the laser pulse as a distortion of the homochiral Néel shape toward a transient mixed Bloch-Néel-Bloch texture along a direction transverse to the DW.
|
Mar 2022
|
|
I06-Nanoscience
|
Sonka
Reimers
,
Dominik
Kriegner
,
Olena
Gomonay
,
Dina
Carbone
,
Filip
Krizek
,
Vit
Novák
,
Richard P.
Campion
,
Francesco
Maccherozzi
,
Alexander
Bjorling
,
Oliver J.
Amin
,
Luke X.
Barton
,
Stuart F.
Poole
,
Khalid A.
Omari
,
Jan
Michalička
,
Ondřej
Man
,
Jairo
Sinova
,
Tomáš
Jungwirth
,
Peter
Wadley
,
Sarnjeet S.
Dhesi
,
Kevin W.
Edmonds
Diamond Proposal Number(s):
[22437, 2714]
Open Access
Abstract: Efficient manipulation of antiferromagnetic (AF) domains and domain walls has opened up new avenues of research towards ultrafast, high-density spintronic devices. AF domain structures are known to be sensitive to magnetoelastic effects, but the microscopic interplay of crystalline defects, strain and magnetic ordering remains largely unknown. Here, we reveal, using photoemission electron microscopy combined with scanning X-ray diffraction imaging and micromagnetic simulations, that the AF domain structure in CuMnAs thin films is dominated by nanoscale structural twin defects. We demonstrate that microtwin defects, which develop across the entire thickness of the film and terminate on the surface as characteristic lines, determine the location and orientation of 180∘ and 90∘ domain walls. The results emphasize the crucial role of nanoscale crystalline defects in determining the AF domains and domain walls, and provide a route to optimizing device performance.
|
Feb 2022
|
|
I06-Nanoscience
|
S.
Kurdi
,
Y.
Sakuraba
,
K.
Masuda
,
H.
Tajiri
,
B.
Nair
,
G. F.
Nataf
,
M. E.
Vickers
,
G.
Reiss
,
M
Meinert
,
S. S.
Dhesi
,
Massimo
Ghidini
,
Z H
Barber
Diamond Proposal Number(s):
[18932]
Open Access
Abstract: In this work, we investigate the effect of anti-site disorder on the half-metallic properties of a Mn2FeAl Heusler alloy thin film. The film was grown on TiN-buffered MgO 001 substrates via magnetron sputtering. A detailed structural characterization using X-ray diffraction (XRD) and anomalous XRD showed that the film crystallizes in the partially disordered L21B structure with 33% disorder between the Mn(B) and Al(D) sites. We measure a positive anisotropic magnetoresistance in the film, which is an indication of non-half metallic behaviour. Our X-ray magnetic circular dichroism sum rules analysis shows that Mn carries the magnetic moment in the film, as predicted, with a positive Fe moment. Experimentally determined moments correspond most closely with those found by density functional calculated ones for the L21B structure with Mn(B) and Al(D) site disorder, matching the experimental structural analysis. We thus attribute the deviation from half-metallic behaviour to the formation of the L21B structure, which we support by density functional theory calculations. To realize a half-metallic Mn2FeAl film it is important that the inverse Heusler XA structure is stabilized with minimal anti-site atomic disorder.
|
Jan 2022
|
|
I06-Nanoscience
|
S. P.
Bommanaboyena
,
D.
Backes
,
L. S. I.
Veiga
,
S. S.
Dhesi
,
Y. R.
Niu
,
B.
Sarpi
,
T.
Denneulin
,
A.
Kovács
,
T.
Mashoff
,
O.
Gomonay
,
J.
Sinova
,
K.
Everschor-Sitte
,
D.
Schönke
,
R. M.
Reeve
,
M.
Klaui
,
H.-J.
Elmers
,
M.
Jourdan
Diamond Proposal Number(s):
[29305]
Open Access
Abstract: In antiferromagnetic spintronics, the read-out of the staggered magnetization or Néel vector is the key obstacle to harnessing the ultra-fast dynamics and stability of antiferromagnets for novel devices. Here, we demonstrate strong exchange coupling of Mn2Au, a unique metallic antiferromagnet that exhibits Néel spin-orbit torques, with thin ferromagnetic Permalloy layers. This allows us to benefit from the well-established read-out methods of ferromagnets, while the essential advantages of antiferromagnetic spintronics are only slightly diminished. We show one-to-one imprinting of the antiferromagnetic on the ferromagnetic domain pattern. Conversely, alignment of the Permalloy magnetization reorients the Mn2Au Néel vector, an effect, which can be restricted to large magnetic fields by tuning the ferromagnetic layer thickness. To understand the origin of the strong coupling, we carry out high resolution electron microscopy imaging and we find that our growth yields an interface with a well-defined morphology that leads to the strong exchange coupling.
|
Nov 2021
|
|