I08-Scanning X-ray Microscopy beamline (SXM)
|
Christina L.
Davis
,
Ryan A.
Venturelli
,
Alexander B.
Michaud
,
Jon R.
Hawkings
,
Amanda M.
Achberger
,
Trista J.
Vick-Majors
,
Brad E.
Rosenheim
,
John E.
Dore
,
August
Steigmeyer
,
Joel D.
Barker
,
Liane G.
Benning
,
Matthew R.
Siegfried
,
John C.
Priscu
,
Brent C.
Christner
,
Carlo
Barbante
,
Mark
Bowling
,
Justin
Burnett
,
Timothy
Campbell
,
Billy
Collins
,
Cindy
Dean
,
Dennis
Duling
,
Helen A.
Fricker
,
Alan
Gagnon
,
Christopher
Gardner
,
Dar
Gibson
,
Chloe
Gustafson
,
David
Harwood
,
Jonas
Kalin
,
Kathy
Kasic
,
Ok-Sun
Kim
,
Edwin
Krula
,
Amy
Leventer
,
Wei
Li
,
W. Berry
Lyons
,
Patrick
Mcgill
,
James
Mcmanis
,
David
Mcpike
,
Anatoly
Mironov
,
Molly
Patterson
,
Graham
Roberts
,
James
Rot
,
Cathy
Trainor
,
Martyn
Tranter
,
John
Winans
,
Bob
Zook
,
Mark L.
Skidmore
Diamond Proposal Number(s):
[25828]
Open Access
Abstract: Ice streams that flow into Ross Ice Shelf are underlain by water-saturated sediments, a dynamic hydrological system, and subglacial lakes that intermittently discharge water downstream across grounding zones of West Antarctic Ice Sheet (WAIS). A 2.06 m composite sediment profile was recently recovered from Mercer Subglacial Lake, a 15 m deep water cavity beneath a 1087 m thick portion of the Mercer Ice Stream. We examined microbial abundances, used 16S rRNA gene amplicon sequencing to assess community structures, and characterized extracellular polymeric substances (EPS) associated with distinct lithologic units in the sediments. Bacterial and archaeal communities in the surficial sediments are more abundant and diverse, with significantly different compositions from those found deeper in the sediment column. The most abundant taxa are related to chemolithoautotrophs capable of oxidizing reduced nitrogen, sulfur, and iron compounds with oxygen, nitrate, or iron. Concentrations of dissolved methane and total organic carbon together with water content in the sediments are the strongest predictors of taxon and community composition. δ¹³C values for EPS (−25 to −30‰) are consistent with the primary source of carbon for biosynthesis originating from legacy marine organic matter. Comparison of communities to those in lake sediments under an adjacent ice stream (Whillans Subglacial Lake) and near its grounding zone provide seminal evidence for a subglacial metacommunity that is biogeochemically and evolutionarily linked through ice sheet dynamics and the transport of microbes, water, and sediments beneath WAIS.
|
Jan 2023
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
A.
Steele
,
L. G
Benning
,
R.
Writh
,
A.
Schreiber
,
T.
Araki
,
F. M.
Mccubbin
,
M. R.
Fries
,
L. R.
Nittler
,
J.
Wang
,
L. J.
Hallis
,
P. G.
Conrad
,
C.
Conley
,
S.
Vitale
,
A. C.
O'Brien
,
V.
Riggi
,
K.
Rogers
Diamond Proposal Number(s):
[2444]
Abstract: Water-rock interactions are relevant to planetary habitability, influencing mineralogical diversity and the production of organic molecules. We examine carbonates and silicates in the martian meteorite Allan Hills 84001 (ALH 84001), using colocated nanoscale analyses, to characterize the nature of water-rock reactions on early Mars. We find complex refractory organic material associated with mineral assemblages that formed by mineral carbonation and serpentinization reactions. The organic molecules are colocated with nanophase magnetite; both formed in situ during water-rock interactions on Mars. Two potentially distinct mechanisms of abiotic organic synthesis operated on early Mars during the late Noachian period (3.9 to 4.1 billion years ago).
|
Jan 2022
|
|
I14-Hard X-ray Nanoprobe
|
Lisa C.
Fuellenbach
,
Jeffrey Paulo H.
Perez
,
Helen
Freeman
,
Andrew N.
Thomas
,
Sathish
Mayanna
,
Julia E.
Parker
,
Jörg
Göttlicher
,
Ralph
Steininger
,
Jörg
Radnik
,
Liane G.
Benning
,
Eric H.
Oelkers
Diamond Proposal Number(s):
[21719]
Abstract: Lead(II) is a toxic pollutant often found in metal-contaminated soils and wastewaters. In acidic aqueous environments, Pb(II) is highly mobile. Chemical treatment strategies of such systems therefore often include neutralization agents and metal sorbents. Since metal solubility and the retention potential of sorbents depend on the redox state of the aqueous system, we tested the efficiency of the naturally occurring redox-sensitive ferrous iron carbonate mineral siderite to remove Pb(II) from acidic aqueous solutions in batch experiments under oxic and anoxic conditions over a total of 1008 h. Siderite dissolution led to an increase in reactive solution pH from 3 to 5.3 and 6.9, while 90 and 100% of the initial aqueous Pb(II) (0.48 × 10–3 mol kg–1) were removed from the oxic and anoxic systems, respectively. Scanning and transmission electron microscopy, combined with X-ray absorption and photoelectron spectroscopy, indicated that under oxic conditions, Pb(II) was consumed by cerussite precipitation and inner-sphere surface complexation to secondary goethite. Under anoxic conditions, Pb(II) was removed by the rapid precipitation of cerussite. This efficient siderite dissolution-coupled sequestration of Pb(II) into more stable solid phases demonstrates this potential method for contaminated water treatment regardless of the redox environment.
|
Oct 2020
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[16256]
Abstract: CaSO4 minerals (i.e. gypsum, anhydrite and bassanite) are widespread in natural and industrial environments. During the last several years, a number of studies have revealed that nucleation in the CaSO4-H2O system is non-classical, where the formation of crystalline phases involves several steps. Based on these recent insights we have formulated a tentative general model for calcium sulfate precipitation from solution. This model involves primary species that are formed through the assembly of multiple Ca2+ and SO42- ions into nanoclusters. These nanoclusters assemble into poorly ordered (i.e. amorphous) hydrated aggregates, which in turn undergo ordering into coherent crystalline units. The thermodynamic (meta)stability of any of the three CaSO4 phases is regulated by temperature, pressure and ionic strength with gypsum being the stable form at low temperatures and low to medium ionic strengths, and anhydrite the stable phase at high temperatures and lower temperature at high salinities. Bassanite is metastable across the entire phase diagram but readily forms as the primary phase at high ionic strengths across a wide range of temperatures, and can persist up to several months. Although the physicochemical conditions leading to bassanite formation in aqueous systems are relatively well established, nanoscale insights into the nucleation mechanisms and pathways are still lacking. To fill this gap, and to further improve our general model for calcium sulfate precipitation, we conducted in situ scattering measurements at small- and wide-angles (SAXS/WAXS) and complemented these with in situ Raman spectroscopic characterization. Based on these experiments we show that the process of formation of bassanite from aqueous solutions is very similar to the formation of gypsum: it involves the aggregation of small primary species into larger disordered aggregates, only from which the crystalline phase develops. These data thus confirm our general model of CaSO4 nucleation and provide clues to explain the abundant occurrence of bassanite on the surface of Mars (and not on the surface of Earth).
|
Mar 2020
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[15050, 14953]
Open Access
Abstract: Precambrian fossils of fungi are sparse, and the knowledge of their early evolution and the role they played in the colonization of land surface are limited. Here, we report the discovery of fungi fossils in a 810 to 715 million year old dolomitic shale from the Mbuji-Mayi Supergroup, Democratic Republic of Congo. Syngenetically preserved in a transitional, subaerially exposed paleoenvironment, these carbonaceous filaments of ~5 μm in width exhibit low-frequency septation (pseudosepta) and high-angle branching that can form dense interconnected mycelium-like structures. Using an array of microscopic (SEM, TEM, and confocal laser scanning fluorescence microscopy) and spectroscopic techniques (Raman, FTIR, and XANES), we demonstrated the presence of vestigial chitin in these fossil filaments and document the eukaryotic nature of their precursor. Based on those combined evidences, these fossil filaments and mycelium-like structures are identified as remnants of fungal networks and represent the oldest, molecularly identified remains of Fungi.
|
Jan 2020
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[16256]
Open Access
Abstract: The controlled crystallisation of struvite (MgNH4PO4∙6H2O) is a viable means for the recovery and recycling of phosphorus (P) from municipal and industrial wastewaters. However, an efficient implementation of this recovery method in water treatment systems requires a fundamental understanding of struvite crystallisation mechanisms, including the behavior and effect of metal contaminants during struvite precipitation. Here, we studied the crystallisation pathways of struvite from aqueous solutions using a combination of ex situ and in situ time-resolved synthesis and characterization techniques, including synchrotron-based small- and wide-angle X-ray scattering (SAXS/WAXS) and cryogenic transmission electron microscopy (cryo-TEM). Struvite syntheses were performed both in the pure Mg-NH4-PO4 system as well as in the presence of cobalt (Co), which, among other metals, is typically present in waste streams targeted for P-recovery. Our results show that in the pure system and at Co concentrations < 0.5 mM, struvite crystals nucleate and grow directly from solution, much in accordance with the classical notion of crystal formation. In contrast, at Co concentrations ≥ 1 mM, crystallisation was preceded by the transient formation of an amorphous nanoparticulate phosphate phase. Depending on the aqueous Co/P ratio, this amorphous precursor was found to transform into either (i) Co-bearing struvite (at Co/P < 0.3) or (ii) cobalt phosphate octahydrate (at Co/P > 0.3). These amorphous-to-crystalline transformations were accompanied by a marked colour change from blue to pink, indicating a change in Co2+ coordination in the formed solid from tetrahedral to octahedral. Our findings have implications for the recovery of nutrients and metals during struvite crystallisation and contribute to the ongoing general discussion about the mechanisms of crystal formation.
|
Aug 2019
|
|
I15-Extreme Conditions
|
Diamond Proposal Number(s):
[11320]
Abstract: The understanding of the gypsum (CaSO4∙2H2O) formation pathway from aqueous solutions has been the subject of intensive research in the last couple of years. This interest stems from the fact that gypsum appears to fall into a broader category of crystalline materials whose formation does not follow classical nucleation and growth theories. The pathways involve transitory precursor cluster species, yet the actual structural properties of such clusters are not very well understood. Here, we show how in situ high-energy X-ray diffraction (HEXD) experiments and molecular dynamics (MD) simulations can be combined to derive the structure of small CaSO4 clusters, which are precursors to crystalline gypsum. We fitted several plausible structures to the derived pair distribution functions (PDFs), and explored their dynamic properties using unbiased MD based on both rigid-ion and polarizable force-fields. Determination of the structure and (meta)stability of the primary species is important both from a fundamental and applied perspective; for example, this will allow for improved design of additives for greater control of the nucleation pathway.
|
Jun 2019
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[16256]
Open Access
Abstract: Mesoporous phosphates are a group of nanostructured materials with promising applications, particularly in biomedicine and catalysis. However, their controlled synthesis via conventional template-based routes presents a number of challenges and limitations. Here, we show how to synthesize a mesoporous magnesium phosphate with a high surface area and a well-defined pore structure through thermal decomposition of a crystalline struvite (MgNH4PO4·6H2O) precursor. In a first step, struvite crystals with various morphologies and sizes, ranging from a few micrometers to several millimeters, had been synthesized from supersaturated aqueous solutions (saturation index (SI) between 0.5 and 4) at ambient pressure and temperature conditions. Afterwards, the crystals were thermally treated at 70–250 °C leading to the release of structurally bound water (H2O) and ammonia (NH3). By combining thermogravimetric analyses (TGA), scanning and transmission electron microscopy (SEM, TEM), N2 sorption analyses and small- and wide-angle X-ray scattering (SAXS/WAXS) we show that this decomposition process results in a pseudomorphic transformation of the original struvite into an amorphous Mg-phosphate. Of particular importance is the fact that the final material is characterized by a very uniform mesoporous structure with 2–5 nm wide pore channels, a large specific surface area of up to 300 m2 g−1 and a total pore volume of up to 0.28 cm3 g−1. Our struvite decomposition method is well controllable and reproducible and can be easily extended to the synthesis of other mesoporous phosphates. In addition, the so produced mesoporous material is a prime candidate for use in biomedical applications considering that magnesium phosphate is a widely used, non-toxic substance that has already shown excellent biocompatibility and biodegradability.
|
Apr 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[1946]
Open Access
Abstract: This study aims to highlight discrepancies between experimental and simulation linked to the mechanisms of Mo and V adsorption onto ferrihydrite (FHY) nanoparticles. We have measured adsorption capacities and uptake efficiencies and then fitted and compared these with outputs from various geochemical and adsorption models that were run as a function of pH, surface area (SA) and ferrihydrite particles size distributions. Our results revealed that the experimental data for the Mo system could be fitted very well, but this was not the case for the V system, when a model default value for the SA of FHY of 600 m2 g−1 was used. The discrepancy in the results for the V system can be explained by the lack of specific V species and/or associated constants in databases and variation in software versions, which change the outputted chemical species. Our comparative results also confirm that any experimental variables used as modelling inputs need to be checked carefully prior to any modelling exercises.
|
Feb 2019
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[8973]
Abstract: Iron sufides are important mineral phases in natural environments where they control global elemental cycles. Fe-S phases have been suggested to form through transformation of several possible precursors to finally reach stable crystalline structures. Mackinawite is a metastable intermediate, of which a full chemical and structural characteristisation of various possible intermediate stages in its formation pathways, or the chemical conditions that affect the transformations to the metastable mackinawite are well understood. Here we report, the various steps of mackinawite formation via oriented aggregation (OA) from a nanoparticulate precursor. During OA, the formation of aggregates is a crucial stage for self-assembly of primary particles to reach stable structures. The formation occurs in five steps: (1) homogeneous nucleation of primary FeSnano particles, (2 and 3) formation of mass fractal-like aggregates from the FeSnano as precursor towards the transformation to mackinawite; (4) oriented alignment and self-assembly of these mackinawite-like aggregates, and (5) transformation to a still metastable but typical layered mackinawite structure.
|
Sep 2018
|
|