|
N. J.
Terrill
,
A.
Bombardi
,
F.
Carla
,
G.
Cinque
,
M. J.
Derry
,
A.
Milsom
,
G.
Siligardi
,
T.
Snow
,
P. D.
Topham
,
X. B.
Zeng
,
T.
Zinn
Open Access
Abstract: Polymer and soft matter research have played an integral part in the development of Diamond Light Source ever since the facility took its first users in 2007. Early experiments explored highly swollen cubic lipid scaffolds using pressure to elicit phase transitions and liquid-crystal engineering . The facility now comprises 33 active synchrotron instruments, together with 13 electron microscopes, and other offline facilities. Diamond has an active polymer and soft matter science program exploring new phase space as well as many in operando studies. Later in the article, we will describe the opportunities available to this research community from the planned machine upgrade, which includes a higher-energy, lower divergence ring with better coherence.
|
Jun 2023
|
|
I22-Small angle scattering & Diffraction
|
M.
Hassan Sk
,
S.
Agrawal
,
M.
Woolley
,
S. M.
Clarke
,
A.
Osundare
,
D.
Craske
,
Robert
Lindsay
,
Andrew J.
Smith
,
T.
Snow
,
T.
Zinn
,
N.
Terrill
Diamond Proposal Number(s):
[23699, 28693, 32669]
Open Access
Abstract: Here, we report the design and successful implementation of an ultra-low oxygen sample cell for use on the SAXS-WAXS (small-wide angle x-ray scattering) beamline I22 at DIAMOND. The rigorous exclusion of oxygen is found to require double jacketing with purge gas throughout the entire system, pipework, pumps, and the sample cell itself. This particularly includes a “double-window” arrangement at the sample location to accommodate the very tight geometrical restrictions of the sample position. The in situ cell design also requires the additional complexity of heating the sample/solution and real-time electrochemical measurements. We demonstrate the successful implementation of this arrangement with real-time in situ characterization of an iron foil corrosion evolving under the “sweet-scale environment,” very anoxic conditions common, in particular, commercial situations. The formation of iron carbonate, siderite, rather than iron oxide, indicates that our system is oxygen free down very low levels (<35 ppb at 80 °C).
|
Apr 2023
|
|
I22-Small angle scattering & Diffraction
|
Abstract: Background: An improved understanding of intervertebral disc (IVD) structure and function is required for treatment development. Loading induces micro-fractures at the interface between the nucleus pulposus (NP) and the annulus fibrosus (AF), which is hypothesized to induce a cascade of cellular changes leading to degeneration. However, there is limited understanding of the structural relationship between the NP and AF at this interface and particularly response to load. Here, X-ray scattering is utilised to provide hierarchical morphometric information of collagen structure across the IVD, especially the interface region under load. Methodology: IVDs were imaged using the I22 SAXS/WAXS beamline at Diamond Light Source. Peaks associated with the D-banded structure of collagen fibrils were fitted to quantify their azimuthal distribution, as well the magnitude and direction of internal strains under static and applied strain (0–20%). Results: IVD tissue regions exhibited structural “AF-like” and “NP-like” fingerprints. Demonstrating high internal strains on collagen fibres particularly within the NP region of the disc. AF and NP regions showed distinct collagen orientation and internal strains with an apparent lack of bracing structure seen at the interface between the differential mechanical tissues. X-ray scattering under tensile strain provided structural information at high resolution, with clear differences observed between normal and degenerate discs under load. Conclusion: X ray scattering has been utilised to develop an improved understanding of collagen structure across the intervertebral disc which can be utilised to gain an increased understanding of load induced propagation of micro fissures and disc degeneration.
|
Oct 2022
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[25602]
Open Access
Abstract: The bone-cartilage unit (BCU) is a universal feature in diarthrodial joints, which is mechanically-graded and subjected to shear and compressive strains. Changes in the BCU have been linked to osteoarthritis (OA) progression. Here we report existence of a physiological internal strain gradient (pre-strain) across the BCU at the ultrastructural scale of the extracellular matrix (ECM) constituents, specifically the collagen fibril. We use X-ray scattering that probes changes in the axial periodicity of fibril-level D-stagger of tropocollagen molecules in the matrix fibrils, as a measure of microscopic pre-strain. We find that mineralized collagen nanofibrils in the calcified plate are in tensile pre-strain relative to the underlying trabecular bone. This behaviour contrasts with the previously accepted notion that fibrillar pre-strain (or D-stagger) in collagenous tissues always reduces with mineralization, via reduced hydration and associated swelling pressure. Within the calcified part of the BCU, a finer-scale gradient in pre-strain (0.6% increase over ~50μm) is observed. The increased fibrillar pre-strain is linked to prior research reporting large tissue-level residual strains under compression. The findings may have biomechanical adaptative significance: higher in-built molecular level resilience/damage resistance to physiological compression, and disruption of the molecular-level pre-strains during remodelling of the bone-cartilage interface may be potential factors in osteoarthritis-based degeneration.
|
Sep 2022
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[28020, 15121]
Open Access
Abstract: The composition of atmospheric aerosols varies with time, season, location, and environment. This affects key aerosol properties such as hygroscopicity and reactivity, influencing the aerosol’s impact on the climate and air quality. The organic fraction of atmospheric aerosol emissions often contains surfactant material, such as fatty acids. These molecules are known to form three-dimensional nanostructures in contact with water. Different nanostructures have marked differences in viscosity and diffusivity that are properties whose understanding is essential when considering an aerosol’s atmospheric impact. We have explored a range of nanostructures accessible to the organic surfactant oleic acid (commonly found in cooking emissions), simulating variation that is likely to happen in the atmosphere. This was achieved by changing the amount of water, aqueous phase salinity and by addition of other commonly coemitted compounds: sugars and stearic acid (the saturated analogue of oleic acid). The nanostructure was observed by both synchrotron and laboratory small/wide angle X-ray scattering (SAXS/WAXS) and found to be sensitive to the proxy composition. Additionally, the spacing between repeat units in these nanostructures was water content dependent (i.e., an increase from 41 to 54 Å in inverse hexagonal phase d-spacing when increasing the water content from 30 to 50 wt %), suggesting incorporation of water within the nanostructure. A significant decrease in mixture viscosity was also observed with increasing water content from ∼104 to ∼102 Pa s when increasing the water content from 30 to 60 wt %. Time-resolved SAXS experiments on levitated droplets of this proxy confirm the phase changes observed in bulk phase mixtures and demonstrate that coexistent nanostructures can form in droplets. Aerosol compositional and subsequent nanostructural changes could affect aerosol processes, leading to an impact on the climate and urban air pollution.
|
Sep 2022
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[23096]
Open Access
Abstract: Atmospheric aerosol particles can be coated with organic material, impacting on aerosol atmospheric lifetime and urban air quality. Coatings of organic material are also found on indoor surfaces such as window glass. Oleic acid is a fatty acid surfactant which is abundant in cooking and marine aerosol emissions. Under ambient conditions it can self-assemble into lamellar bilayers (stacks) with its sodium salt. We found that nano-scale oleic acid-sodium oleate films spin-coated onto solid silicon substrates form a mixed-phase area of lamellar stacks and amorphous film. The coatings were subjected to simulated atmospheric ageing (ozonolysis and humidity changes) while the surface structure was followed by neutron reflectometry. We found that the orientation of lamellar stacks, which is known to affect the diffusivity of small molecules through them, was sensitive to humidity both in oxidised and pristine films. Lamellar bilayer stacks in oxidised films acquired ~11-fold more water in humid conditions (> 80 % relative humidity) compared to the unoxidised film, demonstrating a significant increase in film hygroscopicity after oxidation. Lamellar stacks, consisting only of starting materials, persisted at the end of simulated atmospheric ageing. These findings for atmospherically relevant nano-scale films corroborate previous work on micrometre-scale layers, thus demonstrating that fatty acid self-assembly could significantly increase the atmospheric lifetime of these molecules. The persistence of such semi-solid surfactant arrangements in the atmosphere has implications for the climate as well as urban and indoor air pollution.
|
May 2022
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[18524]
Open Access
Abstract: Fibrotic scarring is prevalent in a range of collagenous tissue disorders. Understanding the role of matrix biophysics in contributing to fibrotic progression is important to develop therapies, as well as to elucidate biological mechanisms. Here, we demonstrate how microfocus small-angle X-ray scattering (SAXS), with in situ mechanics and correlative imaging, can provide quantitative and position-resolved information on the fibrotic matrix nanostructure and its mechanical properties. We use as an example the case of keloid scarring in skin. SAXS mapping reveals heterogeneous gradients in collagen fibrillar concentration, fibril pre-strain (variations in D-period) and a new interfibrillar component likely linked to proteoglycans, indicating evidence of a complex 3D structure at the nanoscale. Furthermore, we demonstrate a proof-of-principle for a diffraction-contrast correlative imaging technique, incorporating, for the first time, DIC and SAXS, and providing an initial estimate for measuring spatially resolved fibrillar-level strain and reorientation in such heterogeneous tissues. By application of the method, we quantify (at the microscale) fibrillar reorientations, increases in fibrillar D-period variance, and increases in mean D-period under macroscopic tissue strains of ~20%. Our results open the opportunity of using synchrotron X-ray nanomechanical imaging as a quantitative tool to probe structure–function relations in keloid and other fibrotic disorders in situ.
|
Mar 2022
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[11316, 8458]
Abstract: The mechanical properties of connective tissues are tailored to their specific function, and changes can lead to dysfunction and pathology. In most mammalian tissues the mechanical environment is governed by the micro- and nano-scale structure of collagen and its interaction with other tissue components, however these hierarchical properties remain poorly understood. In this study we use the human cornea as a model system to characterise and quantify the dominant deformation mechanisms of connective tissue in response to cyclic loads of physiological magnitude. Synchronised biomechanical testing, x-ray scattering and 3D digital image correlation revealed the presence of two dominant mechanisms: collagen fibril elongation due to a largely elastic, spring-like straightening of tropocollagen supramolecular twist, and a more viscous straightening of fibril crimp that gradually increased over successive loading cycles. The distinct mechanical properties of the two mechanisms suggest they have separate roles in vivo. The elastic, spring-like mechanism is fast-acting and likely responds to stresses associated with the cardiac cycle, while the more viscous crimp mechanism will respond to slower processes, such as postural stresses. It is anticipated that these findings will have broad applicability to understanding the normal and pathological functioning of other connective tissues such as skin and blood vessels that exhibit both helical structures and crimp.
|
Jan 2022
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[20541, 21663]
Open Access
Abstract: Organic aerosols are key components of the Earth's atmospheric system. The phase state of organic aerosols is known to be a significant factor in determining aerosol reactivity, water uptake and atmospheric lifetime – with wide implications for cloud formation, climate, air quality and human health. Unsaturated fatty acids contribute to urban cooking emissions and sea spray aerosols. These compounds, exemplified by oleic acid and its sodium salt, are surface-active and have been shown to self-assemble into a variety of liquid-crystalline phases upon addition of water. Here we observe a crystalline acid–soap complex in acoustically levitated oleic acid–sodium oleate particles. We developed a synchrotron-based simultaneous small-angle and wide-angle X-ray scattering (SAXS and WAXS)–Raman microscopy system to probe physical and chemical changes in the proxy during exposure to humidity and the atmospheric oxidant ozone. We present a spatially resolved structural picture of a levitated particle during humidification, revealing a phase gradient consisting of a disordered liquid crystalline shell and crystalline core. Ozonolysis is significantly slower in the crystalline phase compared with the liquid phase, and a significant portion (34 ± 8 %) of unreacted material remains after extensive oxidation. We present experimental evidence of inert surface layer formation during ozonolysis, taking advantage of spatially resolved simultaneous SAXS–WAXS experiments. These observations suggest that atmospheric lifetimes of surface-active organic species in aerosols are highly phase-dependent, potentially impacting climate, urban air quality and long-range transport of pollutants such as polycyclic aromatic hydrocarbons (PAHs).
|
Oct 2021
|
|
|
Open Access
Abstract: Biomechanical changes to the collagen fibrillar architecture in articular cartilage are believed to play a crucial role in enabling normal joint function. However, experimentally there is little quantitative knowledge about the structural response of the Type II collagen fibrils in cartilage to cyclic loading in situ, and the mechanisms that drive the ability of cartilage to withstand long-term repetitive loading. Here we utilize synchrotron small-angle X-ray scattering (SAXS) combined with in-situ cyclic loading of bovine articular cartilage explants to measure the fibrillar response in deep zone articular cartilage, in terms of orientation, fibrillar strain and inter-fibrillar variability in healthy cartilage and cartilage degraded by exposure to the pro-inflammatory cytokine IL-1β. We demonstrate that under repeated cyclic loading the fibrils reversibly change the width of the fibrillar orientation distribution whilst maintaining a largely consistent average direction of orientation. Specifically, the effect on the fibrillar network is a 3-dimensional conical orientation broadening around the normal to the joint surface, inferred by 3D reconstruction of X-ray scattering peak intensity distributions from the 2D pattern. Further, at the intrafibrillar level, this effect is coupled with reversible reduction in fibrillar pre-strain under compression, alongside increase in the variability of fibrillar pre-strain. In IL-1β degraded cartilage, the collagen rearrangement under cyclic loading is disrupted and associated with reduced tissue stiffness. These finding have implications as to how changes in local collagen nanomechanics might drive disease progression or vice versa in conditions such as osteoarthritis and provides a pathway to a mechanistic understanding of such diseases.
|
Sep 2021
|
|