I19-Small Molecule Single Crystal Diffraction
|
Mei-Yan
Gao
,
Andrey A.
Bezrukov
,
Bai-Qiao
Song
,
Meng
He
,
Sousa Javan
Nikkhah
,
Shi-Qiang
Wang
,
Naveen
Kumar
,
Shaza
Darwish
,
Debobroto
Sensharma
,
Chenghua
Deng
,
Jiangnan
Li
,
Lunjie
Liu
,
Rajamani
Krishna
,
Matthias
Vandichel
,
Sihai
Yang
,
Michael J.
Zaworotko
Open Access
Abstract: Ultramicroporous materials can be highly effective at trace gas separations when they offer a high density of selective binding sites. Herein, we report that sql-NbOFFIVE-bpe-Cu, a new variant of a previously reported ultramicroporous square lattice, sql, topology material, sql-SIFSIX-bpe-Zn, can exist in two polymorphs. These polymorphs, sql-NbOFFIVE-bpe-Cu-AA (AA) and sql-NbOFFIVE-bpe-Cu-AB (AB), exhibit AAAA and ABAB packing of the sql layers, respectively. Whereas NbOFFIVE-bpe-Cu-AA (AA) is isostructural with sql-SIFSIX-bpe-Zn, each exhibiting intrinsic 1D channels, sql-NbOFFIVE-bpe-Cu-AB (AB) has two types of channels, the intrinsic channels and extrinsic channels between the sql networks. Gas and temperature induced transformations of the two polymorphs of sql-NbOFFIVE-bpe-Cu were investigated by pure gas sorption, single-crystal X-ray diffraction (SCXRD), variable temperature powder X-ray diffraction (VT-PXRD), and synchrotron PXRD. We observed that the extrinsic pore structure of AB resulted in properties with potential for selective C3H4/C3H6 separation. Subsequent dynamic gas breakthrough measurements revealed exceptional experimental C3H4/C3H6 selectivity (270) and a new benchmark for productivity (118 mmol g–1) of polymer grade C3H6 (purity >99.99%) from a 1:99 C3H4/C3H6 mixture. Structural analysis, gas sorption studies, and gas adsorption kinetics enabled us to determine that a binding “sweet spot” for C3H4 in the extrinsic pores is behind the benchmark separation performance. Density-functional theory (DFT) calculations and Canonical Monte Carlo (CMC) simulations provided further insight into the binding sites of C3H4 and C3H6 molecules within these two hybrid ultramicroporous materials, HUMs. These results highlight, to our knowledge for the first time, how pore engineering through the study of packing polymorphism in layered materials can dramatically change the separation performance of a physisorbent.
|
May 2023
|
|
I19-Small Molecule Single Crystal Diffraction
|
Zhipeng
Zhou
,
Lei
Zhang
,
Yonghang
Yang
,
Inigo J.
Vitórica-Yrezábal
,
Honglei
Wang
,
Fanglin
Tan
,
Li
Gong
,
Yuyao
Li
,
Pohua
Chen
,
Xin
Dong
,
Zihao
Liang
,
Jing
Yang
,
Chao
Wang
,
Yuexian
Hong
,
Yi
Qiu
,
Armin
Gölzhäuser
,
Xudong
Chen
,
Haoyuan
Qi
,
Sihai
Yang
,
Wei
Liu
,
Junliang
Sun
,
Zhikun
Zheng
Diamond Proposal Number(s):
[31627]
Abstract: A core feature of covalent organic frameworks (COFs) is crystallinity, but current crystallization processes rely substantially on trial and error, chemical intuition and large-scale screening, which typically require harsh conditions and low levels of supersaturation, hampering the controlled synthesis of single-crystal COFs, particularly on large scales. Here we report a strategy to produce single-crystal imine-linked COFs in aqueous solutions under ambient conditions using amphiphilic amino-acid derivatives with long hydrophobic chains. We propose that these amphiphilic molecules self-assemble into micelles that serve as dynamic barriers to separate monomers in aqueous solution (nodes) and hydrophobic compartments of the micelles (linkers), thereby regulating the polymerization and crystallization processes. Disordered polyimines were obtained in the micelle, which were then converted into crystals in a step-by-step fashion. Five different three-dimensional COFs and a two-dimensional COF were obtained as single crystals on the gram scale, with yields of 92% and above.
|
Apr 2023
|
|
I11-High Resolution Powder Diffraction
|
Zi
Wang
,
Alena M.
Sheveleva
,
Daniel
Lee
,
Yinlin
Chen
,
Dinu
Iuga
,
W. Trent
Franks
,
Yujie
Ma
,
Jiangnan
Li
,
Lei
Li
,
Yongqiang
Cheng
,
Luke L.
Daemen
,
Sarah J.
Day
,
Anibal J.
Ramirez-Cuesta
,
Bing
Han
,
Alexander S.
Eggeman
,
Eric J. L.
Mcinnes
,
Floriana
Tuna
,
Sihai
Yang
,
Martin
Schroeder
Abstract: We report the modulation of reactivity of nitrogen dioxide (NO2) in a charged metal-organic framework (MOF) material, MFM-305-CH3 in which unbound N-centres are methylated and the cationic charge counter-balanced by Cl− ions in the pores. Uptake of NO2 into MFM-305-CH3 leads to reaction between NO2 and Cl– to give nitrosyl chloride (NOCl) and NO3− anions. A high dynamic uptake of 6.58 mmol g−1 at 298 K is observed for MFM-305-CH3 as measured using a flow of 500 ppm NO2 in He. In contrast, the analogous neutral material, MFM-305, shows a much lower uptake of 2.38 mmol g−1. The binding domains and reactivity of adsorbed NO2 molecules within MFM-305-CH3 and MFM-305 have been probed using in situ synchrotron X-ray diffraction, inelastic neutron scattering and by electron paramagnetic resonance, high-field solid-state nuclear magnetic resonance and UV-vis spectroscopies. The design of charged porous sorbents provides a new platform to control the reactivity of corrosive air pollutants.
|
Apr 2023
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Lixia
Guo
,
Joseph
Hurd
,
Meng
He
,
Wanpeng
Lu
,
Jiangnan
Li
,
Danielle
Crawshaw
,
Mengtian
Fan
,
Sergey A.
Sapchenko
,
Yinlin
Chen
,
Xiangdi
Zeng
,
Meredydd
Kippax-Jones
,
Wenyuan
Huang
,
Zhaodong
Zhu
,
Pascal
Manuel
,
Mark D.
Frogley
,
Daniel
Lee
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[30398]
Open Access
Abstract: The development of stable sorbent materials to deliver reversible adsorption of ammonia (NH3) is a challenging task. Here, we report the efficient capture and storage of NH3 in a series of robust microporous aluminium-based metal-organic framework materials, namely MIL-160, CAU-10-H, Al-fum, and MIL-53(Al). In particular, MIL-160 shows high uptakes of NH3 of 4.8 and 12.8 mmol g−1 at both low and high pressure (0.001 and 1.0 bar, respectively) at 298 K. The combination of in situ neutron powder diffraction, synchrotron infrared micro-spectroscopy and solid-state nuclear magnetic resonance spectroscopy reveals the preferred adsorption domains of NH3 molecules in MIL-160, with H/D site-exchange between the host and guest and an unusual distortion of the local structure of [AlO6] moieties being observed. Dynamic breakthrough experiments confirm the excellent ability of MIL-160 to capture of NH3 with a dynamic uptake of 4.2 mmol g−1 at 1000 ppm. The combination of high porosity, pore aperture size and multiple binding sites promotes the significant binding affinity and capacity for NH3, which makes it a promising candidate for practical applications.
|
Mar 2023
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Yu
Han
,
Yinlin
Chen
,
Yujie
Ma
,
Jamie
Bailey
,
Zi
Wang
,
Daniel
Lee
,
Alena M.
Sheveleva
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Mark D.
Frogley
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Ben F.
Spencer
,
Marek
Nikiel
,
Pascal
Manuel
,
Danielle
Crawshaw
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[30398]
Open Access
Abstract: Benzene is an important air pollutant and a key chemical feedstock for the synthesis of cyclohexane. Because of the small difference of 0.6°C in their boiling points, the separation of benzene and cyclohexane is extremely challenging. Here, we report the high adsorption of benzene at low pressure and efficient separation of benzene/cyclohexane, achieved by the control of pore chemistry of two families of robust metal-organic frameworks, UiO-66 and MFM-300. At 298 K, UiO-66-CuII shows an exceptional adsorption of benzene of 3.92 mmol g−1 at 1.2 mbar and MFM-300(Sc) exhibits a high selectivity of 166 for the separation of benzene/cyclohexane (v/v = 1/1) mixture. In situ synchrotron X-ray diffraction and neutron powder diffraction, and multiple spectroscopic techniques reveal the binding mechanisms of benzene and cyclohexane in these materials. We also report the first example of direct visualization of reversible binding of benzene at an open Cu(II) site within metal-organic frameworks.
|
Feb 2023
|
|
I11-High Resolution Powder Diffraction
|
Jiangnan
Li
,
Zi
Wang
,
Yinlin
Chen
,
Yongqiang
Cheng
,
Luke L.
Daemen
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Sarah J.
Day
,
Anibal J.
Ramirez-Cuesta
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[31365]
Open Access
Abstract: Increasing levels of air pollution are driving the need for the development of new processes that take “waste-to-chemicals”. Herein, we report the capture and conversion under ambient conditions of a major air pollutant, NO2, using a robust metal-organic framework (MOF) material, Zr-bptc (H4bptc = 3,3′,5,5′-biphenyltetracarboxylic acid), comprising {Zr6(μ3-O)4(μ3-OH)4(COO)12} clusters linked by 4-connected bptc4– ligands in an ftw topology. At 298 K, Zr-bptc shows exceptional stability and adsorption of NO2 at both low (4.9 mmol g–1 at 10 mbar) and high pressures (13.8 mmol g–1 at 1.0 bar), as measured by isotherm experiments. Dynamic breakthrough experiments have confirmed the selective retention of NO2 by Zr-bptc at low concentrations under both dry and wet conditions. The immobilized NO2 can be readily transformed into valuable nitro compounds relevant to construction, agrochemical, and pharmaceutical industries. In situ crystallographic and spectroscopic studies reveal strong binding interactions of NO2 to the {Zr6(μ3-O)4(μ3-OH)4(COO)12} cluster node. This study paves a circular pathway to enable the integration of nitrogen-based air pollutants into the production of fine chemicals.
|
Oct 2022
|
|
I20-EDE-Energy Dispersive EXAFS (EDE)
|
Mengtian
Fan
,
Shaojun
Xu
,
Bing
An
,
Alena M.
Sheveleva
,
Alexander
Betts
,
Joseph
Hurd
,
Zhaodong
Zhu
,
Meng
He
,
Dinu
Iuga
,
Longfei
Lin
,
Xinchen
Kang
,
Christopher M. A.
Parlett
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Luke L.
Keenan
,
Daniel
Lee
,
Martin P.
Attfield
,
Sihai
Yang
Diamond Proposal Number(s):
[28575]
Abstract: The production of conjugated C4-C5 dienes from biomass can enable the sustainable synthesis of many important polymers and liquid fuels. Here, we report the first example of bimetallic (Nb, Al)-atomically doped mesoporous silica, denoted as AlNb-MCM-41, which affords quantitative conversion of 2-methyltetrahydrofuran (2-MTHF) to pentadienes with a high selectivity of 91%. The incorporation of Al(III) and Nb(V) sites into the framework of AlNb-MCM-41 has effectively tuned the nature and distribution of Lewis and Brønsted acid sites within the structure. Operando X-ray absorption, diffuse reflectance infrared and solid-state NMR spectroscopy collectively reveal the molecular mechanism of the conversion of adsorbed 2-MTHF over AlNb-MCM-41. Specifically, the atomically-dispersed Nb(V) sites play an important role in binding 2-MTHF to drive the conversion. Overall, this study highlights the potential of hetero-atomic mesoporous solids for the manufacture of renewable materials.
|
Oct 2022
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Jin
Chen
,
Qingqing
Mei
,
Yinlin
Chen
,
Christopher
Marsh
,
Bing
An
,
Xue
Han
,
Ian P.
Silverwood
,
Ming
Li
,
Yongqiang
Cheng
,
Meng
He
,
Xi
Chen
,
Weiyao
Li
,
Meredydd
Kippax-Jones
,
Danielle
Crawshaw
,
Mark D.
Frogley
,
Sarah J.
Day
,
Victoria
García-Sakai
,
Pascal
Manuel
,
Anibal J.
Ramirez-Cuesta
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[29649]
Open Access
Abstract: The development of materials showing rapid proton conduction with a low activation energy and stable performance over a wide temperature range is an important and challenging line of research. Here, we report confinement of sulfuric acid within porous MFM-300(Cr) to give MFM-300(Cr)·SO4(H3O)2, which exhibits a record-low activation energy of 0.04 eV, resulting in stable proton conductivity between 25 and 80 °C of >10–2 S cm–1. In situ synchrotron X-ray powder diffraction (SXPD), neutron powder diffraction (NPD), quasielastic neutron scattering (QENS), and molecular dynamics (MD) simulation reveal the pathways of proton transport and the molecular mechanism of proton diffusion within the pores. Confined sulfuric acid species together with adsorbed water molecules play a critical role in promoting the proton transfer through this robust network to afford a material in which proton conductivity is almost temperature-independent.
|
Jul 2022
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I19-Small Molecule Single Crystal Diffraction
|
Weiyao
Li
,
Jiangnan
Li
,
Thien D.
Duong
,
Sergey A.
Sapchenko
,
Xue
Han
,
Jack D.
Humby
,
George F. S.
Whitehead
,
Inigo J.
Vitórica-Yrezábal
,
Ivan
Da Silva
,
Pascal
Manuel
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[28479, 23480]
Open Access
Abstract: The development of efficient sorbent materials for sulfur dioxide (SO2) is of key industrial interest. However, due to the corrosive nature of SO2, conventional porous materials often exhibit poor reversibility and limited uptake toward SO2 sorption. Here, we report high adsorption of SO2 in a series of Cu(II)-carboxylate-based metal–organic framework materials. We describe the impact of ligand functionalization and open metal sites on the uptake and reversibility of SO2 adsorption. Specifically, MFM-101 and MFM-190(F) show fully reversible SO2 adsorption with remarkable capacities of 18.7 and 18.3 mmol g–1, respectively, at 298 K and 1 bar; the former represents the highest reversible uptake of SO2 under ambient conditions among all porous solids reported to date. In situ neutron powder diffraction and synchrotron infrared microspectroscopy enable the direct visualization of binding domains of adsorbed SO2 molecules as well as host–guest binding dynamics. We have found that the combination of open Cu(II) sites and ligand functionalization, together with the size and geometry of metal–ligand cages, plays an integral role in the enhancement of SO2 binding.
|
Jul 2022
|
|
|
Open Access
Abstract: The purification of light olefins is one of the most important chemical separations globally and consumes large amounts of energy. Porous materials have the capability to improve the efficiency of this process by acting as solid, regenerable adsorbents. However, to develop translational systems, the underlying mechanisms of adsorption in porous materials must be fully understood. Herein, we report the adsorption and dynamic separation of C2 and C3 hydrocarbons in the metal–organic framework MFM-300(In), which exhibits excellent performance in the separation of mixtures of ethane/ethylene and propyne/propylene. Unusually selective adsorption of ethane over ethylene at low pressure is observed, resulting in selective retention of ethane from a mixture of ethylene/ethane, thus demonstrating its potential for a one-step purification of ethylene (purity > 99.9%). In situ neutron powder diffraction and inelastic neutron scattering reveal the preferred adsorption domains and host–guest binding dynamics of adsorption of C2 and C3 hydrocarbons in MFM-300(In).
|
Jun 2022
|
|