B18-Core EXAFS
|
Connaugh M.
Fallon
,
William R.
Bower
,
Brian A.
Powell
,
Francis R.
Livens
,
Ian C.
Lyon
,
Alana E.
Mcnulty
,
Kathryn
Peruski
,
J. Frederick W.
Mosselmans
,
Daniel I.
Kaplan
,
Daniel
Grolimund
,
Peter
Warnicke
,
Dario
Ferreira-Sanchez
,
Marja Siitari
Kauppi
,
Gianni F.
Vettese
,
Samuel
Shaw
,
Katherine
Morris
,
Gareth T. W.
Law
Diamond Proposal Number(s):
[16611, 16939, 17243]
Open Access
Abstract: Uranium dioxide (UO2) and metaschoepite (UO3•nH2O) particles have been identified as contaminants at nuclear sites. Understanding their behavior and impact is crucial for safe management of radioactively contaminated land and to fully understand U biogeochemistry. The Savannah River Site (SRS) (South Carolina, USA), is one such contaminated site, following historical releases of U-containing wastes to the vadose zone. Here, we present an insight into the behavior of these two particle types under dynamic conditions representative of the SRS, using field lysimeters (15 cm D x 72 cm L). Discrete horizons containing the different particle types were placed at two depths in each lysimeter (25 cm and 50 cm) and exposed to ambient rainfall for 1 year, with an aim of understanding the impact of dynamic, shallow subsurface conditions on U particle behavior and U migration. The dissolution and migration of U from the particle sources and the speciation of U throughout the lysimeters was assessed after 1 year using a combination of sediment digests, sequential extractions, and bulk and μ-focus X-ray spectroscopy. In the UO2 lysimeter, oxidative dissolution of UO2 and subsequent migration of U was observed over 1–2 cm in the direction of waterflow and against it. Sequential extractions of the UO2 sources suggest they were significantly altered over 1 year. The metaschoepite particles also showed significant dissolution with marginally enhanced U migration (several cm) from the sources. However, in both particle systems the released U was quantitively retained in sediment as a range of different U(IV) and U(VI) phases, and no detectable U was measured in the lysimeter effluent. The study provides a useful insight into U particle behavior in representative, real-world conditions relevant to the SRS, and highlights limited U migration from particle sources due to secondary reactions with vadose zone sediments over 1 year.
|
Dec 2022
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[21441]
Open Access
Abstract: Selenium (Se) is a toxic contaminant with multiple anthropogenic sources, including 79Se from nuclear fission. Se mobility in the geosphere is generally governed by its oxidation state, therefore understanding Se speciation under variable redox conditions is important for the safe management of Se contaminated sites. Here, we investigate Se behavior in sediment groundwater column systems. Experiments were conducted with environmentally relevant Se concentrations, using a range of groundwater compositions, and the impact of electron-donor (i.e., biostimulation) and groundwater sulfate addition was examined over a period of 170 days. X-Ray Absorption Spectroscopy and standard geochemical techniques were used to track changes in sediment associated Se concentration and speciation. Electron-donor amended systems with and without added sulfate retained up to 90% of added Se(VI)(aq), with sediment associated Se speciation dominated by trigonal Se(0) and possibly trace Se(-II); no Se colloid formation was observed. The remobilization potential of the sediment associated Se species was then tested in reoxidation and seawater intrusion perturbation experiments. In all treatments, sediment associated Se (i.e., trigonal Se(0)) was largely resistant to remobilization over the timescales of the experiments (170 days). However, in the perturbation experiments, less Se was remobilized from sulfidic sediments, suggesting that previous sulfate-reducing conditions may buffer Se against remobilization and migration.
|
Apr 2022
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[7367, 7593]
Abstract: 99Tc will be present in significant quantities in radioactive wastes including intermediate-level waste (ILW). The internationally favored concept for disposing of higher activity radioactive wastes including ILW is via deep geological disposal in an underground engineered facility located ∼200–1000 m deep. Typically, in the deep geological disposal environment, the subsurface will be saturated, cement will be used extensively as an engineering material, and iron will be ubiquitous. This means that understanding Tc biogeochemistry in high pH, cementitious environments is important to underpin safety case development. Here, alkaline sediment microcosms (pH 10) were incubated under anoxic conditions under “no added Fe(III)” and “with added Fe(III)” conditions (added as ferrihydrite) at three Tc concentrations (10–11, 10–6, and 10–4 mol L–1). In the 10–6 mol L–1 Tc experiments with no added Fe(III), ∼35% Tc(VII) removal occurred during bioreduction. Solvent extraction of the residual solution phase indicated that ∼75% of Tc was present as Tc(IV), potentially as colloids. In both biologically active and sterile control experiments with added Fe(III), Fe(II) formed during bioreduction and >90% Tc was removed from the solution, most likely due to abiotic reduction mediated by Fe(II). X-ray absorption spectroscopy (XAS) showed that in bioreduced sediments, Tc was present as hydrous TcO2-like phases, with some evidence for an Fe association. When reduced sediments with added Fe(III) were air oxidized, there was a significant loss of Fe(II) over 1 month (∼50%), yet this was coupled to only modest Tc remobilization (∼25%). Here, XAS analysis suggested that with air oxidation, partial incorporation of Tc(IV) into newly forming Fe oxyhydr(oxide) minerals may be occurring. These data suggest that in Fe-rich, alkaline environments, biologically mediated processes may limit Tc mobility.
|
Nov 2021
|
|
I14-Hard X-ray Nanoprobe
I18-Microfocus Spectroscopy
|
Abstract: Radioactive ‘hot’ particles can be deposited in the environment as a result of illicit activities, nuclear accidents (e.g., Chernobyl, Fukushima), weapons use, mining, and/or nuclear waste disposal. Understanding the long-term behaviour of such materials in the environment is important for understanding risk and environmental impact, and for designing remediation strategies. However, mechanistic knowledge of hot particle alteration processes, reaction products, and radionuclide speciation are limited, especially at finely resolved spatial scales. In this talk, we provide two case-studies that detail how micro- to nano-focus synchrotron X-ray techniques can be used as part of an analytical “tool kit” to fully characterise nuclear industry born hot particles. In turn, this data can inform safety assessments and clean-up / decommissioning efforts at radioactively contaminated sites.
In both case-studies, we examine highly radioactive micro-particles that were found in soil samples taken from nuclear exclusion zone that surrounds the Fukushima Daiichi Nuclear Power Plant (FDNPP). These particles were emitted from the damaged FDNPP reactors during the 2011 accident. Recent work by our group [1, 2] has shown that these particles are common forms of contamination in the nuclear exclusion zone, but the possible environmental and human-health impacts of the particles are not yet known. Recent work [3, 4] on Diamond Light Source Beamlines I18 (micro-focus X-ray spectroscopy) and I14 (Hard X-ray nanoprobe), and the Swiss Light Source micro-XAS Beamline, has permitted detailed chemical characterisation of these challenging materials. In case study 1, we will present micro-focus data that describes the speciation of actinide elements in whole FDNPP hot particles [3]. The data includes the first speciation information for plutonium released from the damaged FDNPP reactors. In case study 2, we present nano-probe characterisation of recently discovered hot particles derived from FDNPP reactor Unit 1 [4]. These particles have the highest ever recorded 134+137Cs radioactivities for particles released from the FDNPP. In our work, FIB sectioning of the particles permitted detailed SIMS, electron microscopy, and hard X-ray nano-probe analysis of the particles. In particular, combined electron-microscopy and synchrotron-based nano-focus XRF and XRD analyses were used to characterise the particles (e.g., Figure 1).
For both case studies we will provide an overview of sample preparation, analysis considerations, and discuss how the results inform management of the FDNPP legacy.
|
Jul 2021
|
|
I14-Hard X-ray Nanoprobe
|
Kazuya
Morooka
,
Eitaro
Kurihara
,
Masato
Takehara
,
Ryu
Takami
,
Kazuki
Fueda
,
Kenji
Horie
,
Mami
Takehara
,
Shinya
Yamasaki
,
Toshihiko
Ohnuki
,
Bernd
Grambow
,
Gareth T. W.
Law
,
Joyce W. I.
Ang
,
William R.
Bower
,
Julia
Parker
,
Rodney
Ewings
,
Satoshi
Utsunomiya
Diamond Proposal Number(s):
[21246]
Abstract: A contaminated zone elongated toward Futaba Town, north-northwest of the Fukushima Daiichi Nuclear Power Plant (FDNPP), contains highly radioactive particles released from reactor Unit 1. There are uncertainties associated with the physio-chemical properties and environmental impacts of these particles. In this study, 31 radioactive particles were isolated from surface soils collected 3.9 km north-northwest of the FDNPP. Two of these particles have the highest particle-associated 134+137Cs activity ever reported for Fukushima (6.1 × 105 and 2.5 × 106 Bq per particle after decay-correction to March, 2011). The new, highly-radioactive particle labeled FTB1 is an aggregate of flaky silicate nanoparticles with an amorphous structure containing ~0.8 wt% Cs, occasionally associated with SiO2 and TiO2 inclusions. FTB1 likely originates from the reactor building, which was damaged by a H2 explosion, after adsorbing volatilized Cs. The 134+137Cs activity in the other highly radioactive particle labeled FTB26 exceeded 106 Bq. FTB26 has a glassy carbon core and a surface that is embedded with numerous micro-particles: Pb–Sn alloy, fibrous Al-silicate, Ca-carbonate or hydroxide, and quartz. The isotopic signatures of the micro-particles indicate neutron capture by B, Cs volatilization, and adsorption of natural Ba. The composition of the micro-particles on FTB26 reflects the composition of airborne particles at the moment of the H2 explosion. Owing to their large size, the health effects of the highly radioactive particles are likely limited to external radiation during static contact with skin; the highly radioactive particles are thus expected to have negligible health impacts for humans. By investigating the mobility of the highly radioactive particles, we can better understand how the radiation dose transfers through environments impacted by Unit 1. The highly radioactive particles also provide insights into the atmospheric conditions at the time of the Unit 1 explosion and the physio-chemical phenomena that occurred during reactor meltdown.
|
Feb 2021
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[17243]
Open Access
Abstract: Understanding the speciation and fate of radium during operational discharge from the offshore oil and gas industry into the marine environment is important in assessing its long term environmental impact. In the current work, 226Ra concentrations in marine sediments contaminated by produced water discharge from a site in the UK were analysed using gamma spectroscopy. Radium was present in field samples (0.1 - 0.3 Bq g-1) within International Atomic Energy Agency activity thresholds and was found to be primarily associated with micron sized radiobarite particles (≤2 μm). Experimental studies of synthetic/field produced water and seawater mixing under laboratory conditions showed that a significant proportion of radium (up to 97%) co-precipitated with barite confirming the radiobarite fate pathway. The results showed that produced water discharge into the marine environment results in the formation of radiobarite particles which incorporate a significant portion of radium and can be deposited in marine sediments.
|
Jan 2021
|
|
B18-Core EXAFS
I18-Microfocus Spectroscopy
|
Eitaro
Kurihara
,
Masato
Takehara
,
Mizuki
Suetake
,
Ryohei
Ikehara
,
Tatsuki
Komiya
,
Kazuya
Morooka
,
Ryu
Takami
,
Shinya
Yamasaki
,
Toshihiko
Ohnuki
,
Kenji
Horie
,
Mami
Takehara
,
Gareth T. W.
Law
,
William
Bower
,
J. Frederick W.
Mosselmans
,
Peter
Warnicke
,
Bernd
Grambow
,
Rodney C.
Ewing
,
Satoshi
Utsunomiya
Diamond Proposal Number(s):
[21211]
Abstract: Traces of Pu have been detected in material released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March of 2011; however, to date the physical and chemical form of the Pu have remained unknown. Here we report the discovery of particulate Pu associated with cesium-rich microparticles (CsMPs) that formed in and were released from the reactors during the FDNPP meltdowns. The Cs-pollucite-based CsMP contained discrete U(IV)O2 nanoparticles, <~10 nm, one of which is enriched in Pu adjacent to fragments of Zr-cladding. The isotope ratios, 235U/238U, 240Pu/239Pu, and 242Pu/239Pu, of the CsMPs were determined to be ~0.0193, ~0.347, and ~0.065, respectively, which are consistent with the calculated isotopic ratios of irradiated-fuel fragments. Thus, considering the regional distribution of CsMPs, the long-distance dispersion of Pu from FNDPP is attributed to the transport by CsMPs that have incorporated nanoscale fuel fragments prior to their dispersion up to 230 km away from the Fukushima Daiichi reactor site.
|
Nov 2020
|
|
B18-Core EXAFS
I18-Microfocus Spectroscopy
|
Adam J.
Fuller
,
Peter
Leary
,
Neil D.
Gray
,
Helena S.
Davies
,
J. Frederick W.
Mosselmans
,
Filipa
Cox
,
Clare H.
Robinson
,
Jon K.
Pittman
,
Clare M.
Mccann
,
Michael
Muir
,
Margaret C.
Graham
,
Satoshi
Utsunomiya
,
William R.
Bower
,
Katherine
Morris
,
Samuel
Shaw
,
Pieter
Bots
,
Francis R.
Livens
,
Gareth T. W.
Law
Diamond Proposal Number(s):
[10163, 12767, 12477]
Open Access
Abstract: Understanding the long-term fate, stability, and bioavailability of uranium (U) in the environment is important for the management of nuclear legacy sites and radioactive wastes. Analysis of U behavior at natural analogue sites permits evaluation of U biogeochemistry under conditions more representative of long-term equilibrium. Here, we have used bulk geochemical and microbial community analysis of soils, coupled with X-ray absorption spectroscopy and μ-focus X-ray fluorescence mapping, to gain a mechanistic understanding of the fate of U transported into an organic-rich soil from a pitchblende vein at the UK Needle's Eye Natural Analogue site. U is highly enriched in the Needle's Eye soils (∼1600 mg kg−1). We show that this enrichment is largely controlled by U(VI) complexation with soil organic matter and not U(VI) bioreduction. Instead, organic-associated U(VI) seems to remain stable under microbially-mediated Fe(III)-reducing conditions. U(IV) (as non-crystalline U(IV)) was only observed at greater depths at the site (>25 cm); the soil here was comparatively mineral-rich, organic-poor, and sulfate-reducing/methanogenic. Furthermore, nanocrystalline UO2, an alternative product of U(VI) reduction in soils, was not observed at the site, and U did not appear to be associated with Fe-bearing minerals. Organic-rich soils appear to have the potential to impede U groundwater transport, irrespective of ambient redox conditions.
|
Apr 2020
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[18788]
Open Access
Abstract: Carbon monoxide (CO) purification from syngas impurities is a highly energy and cost intensive process. Adsorption separation using metal–organic frameworks (MOFs) is being explored as an alternative technology for CO/nitrogen (N2) and CO/carbon dioxide (CO2) separation. Currently, MOFs' uptake and selectivity levels do not justify displacement of the current commercially available technologies. Herein, we have impregnated a leading MOF candidate for CO purification, i.e. M-MOF-74 (M = Co or Ni), with Cu+ sites. Cu+ allows strong π-complexation from the 3d electrons with CO, potentially enhancing the separation performance. We have optimised the Cu loading procedure and confirmed the presence of the Cu+ sites using X-ray absorption fine structure analysis (XAFS). In situ XAFS and diffuse reflectance infrared Fourier Transform spectroscopy analyses have demonstrated Cu+–CO binding. The dynamic breakthrough measurements showed an improvement in CO/N2 and CO/CO2 separations upon Cu impregnation. This is because Cu sites do not block the MOF metal sites but rather increase the number of sites available for interactions with CO, and decrease the surface area/porosity available for adsorption of the lighter component.
|
Jan 2020
|
|
B18-Core EXAFS
|
Kurt F.
Smith
,
Katherine
Morris
,
Gareth
Law
,
Ellen H.
Winstanley
,
Francis R.
Livens
,
Joshua S.
Weatherill
,
Liam G.
Abrahamsen-Mills
,
Nicholas D.
Bryan
,
J. Frederick W.
Mosselmans
,
Giannantonio
Cibin
,
Stephen
Parry
,
Richard
Blackham
,
Kathleen A.
Law
,
Samuel
Shaw
Diamond Proposal Number(s):
[17243]
Open Access
Abstract: Understanding interactions between iron (oxyhydr)oxide nanoparticles and plutonium is essential to underpin technology to treat radioactive effluents, in clean-up of land contaminated with radionuclides, and to ensure the safe disposal of radioactive wastes. These interactions include a range of adsorption, precipitation and incorporation processes. Here, we explore the mechanisms of plutonium sequestration during ferrihydrite precipitation from an acidic solution. The initial 1 M HNO3 solution with Fe(III)(aq) and 242Pu(IV)(aq) underwent controlled hydrolysis via the addition of NaOH to pH 9. The majority of Fe(III)(aq) and Pu(IV)(aq) was removed from solution between pH 2 and 3 during ferrihydrite formation. Analysis of Pu-ferrihydrite by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy showed that Pu(IV) formed an inner sphere tetradentate complex on the ferrihydrite surface, with minor amounts of PuO2 present. Best fits to the EXAFS data collected from Pu-ferrihydrite samples aged for two- and six- months showed no statistically significant change in the Pu(IV)-Fe oxyhydroxide surface complex despite the ferrihydrite undergoing extensive recrystallisation to hematite. This suggests the Pu remains strongly sorbed to the iron (oxyhydr)oxide surface and could be retained over extended time periods.
|
Sep 2019
|
|