I24-Microfocus Macromolecular Crystallography
|
Richard J.
Gildea
,
James
Beilsten-Edmands
,
Danny
Axford
,
Sam
Horrell
,
Pierre
Aller
,
James
Sandy
,
Juan
Sanchez-Weatherby
,
C. David
Owen
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
Robin L.
Owen
,
Martin A.
Walsh
,
Graeme
Winter
Diamond Proposal Number(s):
[26986, 27088]
Open Access
Abstract: In macromolecular crystallography, radiation damage limits the amount of data that can be collected from a single crystal. It is often necessary to merge data sets from multiple crystals; for example, small-wedge data collections from micro-crystals, in situ room-temperature data collections and data collection from membrane proteins in lipidic mesophases. Whilst the indexing and integration of individual data sets may be relatively straightforward with existing software, merging multiple data sets from small wedges presents new challenges. The identification of a consensus symmetry can be problematic, particularly in the presence of a potential indexing ambiguity. Furthermore, the presence of non-isomorphous or poor-quality data sets may reduce the overall quality of the final merged data set. To facilitate and help to optimize the scaling and merging of multiple data sets, a new program, xia2.multiplex, has been developed which takes data sets individually integrated with DIALS and performs symmetry analysis, scaling and merging of multi-crystal data sets. xia2.multiplex also performs analysis of various pathologies that typically affect multi-crystal data sets, including non-isomorphism, radiation damage and preferential orientation. After the description of a number of use cases, the benefit of xia2.multiplex is demonstrated within a wider autoprocessing framework in facilitating a multi-crystal experiment collected as part of in situ room-temperature fragment-screening experiments on the SARS-CoV-2 main protease.
|
Jun 2022
|
|
|
Open Access
Abstract: The DIALS software for the processing of X-ray diffraction data is presented, with an emphasis on how the suite may be used as a toolkit for data processing. The description starts with an overview of the history and intent of the toolkit, usage as an automated system, command-line use, and ultimately how new tools can be written using the API to perform bespoke analysis. Consideration is also made to the application of DIALS to techniques outside of macromolecular X-ray crystallography.
|
Nov 2021
|
|
|
Herbert J.
Bernstein
,
Andreas
Forster
,
Asmit
Bhowmick
,
Aaron S.
Brewster
,
Sandor
Brockhauser
,
Luca
Gelisio
,
David R.
Hall
,
Filip
Leonarski
,
Valerio
Mariani
,
Gianluca
Santoni
,
Clemens
Vonrhein
,
Graeme
Winter
Open Access
Abstract: Macromolecular crystallography (MX) is the dominant means of determining the three-dimensional structures of biological macromolecules. Over the last few decades, most MX data have been collected at synchrotron beamlines using a large number of different detectors produced by various manufacturers and taking advantage of various protocols and goniometries. These data came in their own formats: sometimes proprietary, sometimes open. The associated metadata rarely reached the degree of completeness required for data management according to Findability, Accessibility, Interoperability and Reusability (FAIR) principles. Efforts to reuse old data by other investigators or even by the original investigators some time later were often frustrated. In the culmination of an effort dating back more than two decades, a large portion of the research community concerned with high data-rate macromolecular crystallography (HDRMX) has now agreed to an updated specification of data and metadata for diffraction images produced at synchrotron light sources and X-ray free-electron lasers (XFELs). This `Gold Standard' will facilitate the processing of data sets independent of the facility at which they were collected and enable data archiving according to FAIR principles, with a particular focus on interoperability and reusability. This agreed standard builds on the NeXus/HDF5 NXmx application definition and the International Union of Crystallography (IUCr) imgCIF/CBF dictionary, and it is compatible with major data-processing programs and pipelines. Just as with the IUCr CBF/imgCIF standard from which it arose and to which it is tied, the NeXus/HDF5 NXmx Gold Standard application definition is intended to be applicable to all detectors used for crystallography, and all hardware and software developers in the field are encouraged to adopt and contribute to the standard.
|
Sep 2020
|
|
|
Open Access
Abstract: In processing X-ray diffraction data, the intensities obtained from integration of the diffraction images must be corrected for experimental effects in order to place all intensities on a common scale both within and between data collections. Scaling corrects for effects such as changes in sample illumination, absorption and, to some extent, global radiation damage that cause the measured intensities of symmetry-equivalent observations to differ throughout a data set. This necessarily requires a prior evaluation of the point-group symmetry of the crystal. This paper describes and evaluates the scaling algorithms implemented within the DIALS data-processing package and demonstrates the effectiveness and key features of the implementation on example macromolecular crystallographic rotation data. In particular, the scaling algorithms enable new workflows for the scaling of multi-crystal or multi-sweep data sets, providing the analysis required to support current trends towards collecting data from ever-smaller samples. In addition, the implementation of a free-set validation method is discussed, which allows the quantification of the suitability of scaling-model and algorithm choices.
|
Apr 2020
|
|
Data acquisition
Detectors
|
Open Access
Abstract: The Diamond Light Source data analysis infrastructure, Zocalo, is built on a messaging framework. Analysis tasks are processed by a scalable pool of workers running on cluster nodes. Results can be written to a common file system, sent to another worker for further downstream processing and/or streamed to a LIMS. Zocalo allows increased parallelization of computationally expensive tasks and makes the use of computational resources more efficient. The infrastructure is low-latency, fault-tolerant, and allows for highly dynamic data processing. Moving away from static workflows expressed in shell scripts we can easily re-trigger processing tasks in the event that an issue is found. It allows users to re-run tasks with additional input and ensures that automatically and manually triggered processing results are treated equally. Zocalo was originally conceived to cope with the additional demand on infrastructure by the introduction of Eiger detectors with up to 18 Mpixels and running at up to 560 Hz framerate on single crystal diffraction beamlines. We are now adapting Zocalo to manage processing tasks for ptychography, tomography, cryo-EM, and serial crystallography workloads.
|
Oct 2019
|
|
B23-Circular Dichroism
I02-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[14493, 14916, 15733]
Abstract: Using X‐ray crystallography, we show an enantiospecificity in DNA G‐quadruplex binding, using the complexes Λ/∆‐[Ru(TAP)2(dppz‐11‐CN)]2+ (TAP=1,4,5,8‐tetraazaphenanthrene) containing the dppz (dipyridophenazine) ligand, paralleling the specificity of the complexes with duplex DNA. The Λ complex crystallises with the normally parallel stranded d(TAGGGTTA) tetraplex to give the first such antiparallel strand assembly in which syn‐guanosine is adjacent to the complex at the 5’ end of the quadruplex core. SRCD measurements confirm that the same conformational switch occurs in solution. The Δ enantiomer, by contrast, is present in the structure but stacked at the ends of the assembly. In addition, we report the structure of Λ‐[Ru(phen)2(11‐CN‐dppz)]2+ bound to d(TCGGCGCCGA), a duplex forming sequence, and use both structural models to aid in the elucidation of the motif‐specific luminescence response of the isostructural phen analogue enantiomers.
|
Apr 2019
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Graeme
Winter
,
Richard J.
Gildea
,
Neil G.
Paterson
,
John
Beale
,
Markus
Gerstel
,
Danny
Axford
,
Melanie
Vollmar
,
Katherine E.
Mcauley
,
Robin L.
Owen
,
Ralf
Flaig
,
Alun W.
Ashton
,
David
Hall
Open Access
Abstract: Strategies for collecting X-ray diffraction data have evolved alongside beamline hardware and detector developments. The traditional approaches for diffraction data collection have emphasised collecting data from noisy integrating detectors (i.e. film, image plates and CCD detectors). With fast pixel array detectors on stable beamlines, the limiting factor becomes the sample lifetime, and the question becomes one of how to expend the photons that your sample can diffract, i.e. as a smaller number of stronger measurements or a larger number of weaker data. This parameter space is explored via experiment and synthetic data treatment and advice is derived on how best to use the equipment on a modern beamline. Suggestions are also made on how to acquire data in a conservative manner if very little is known about the sample lifetime.
|
Mar 2019
|
|
I19-Small Molecule Single Crystal Diffraction
|
C.
Delacotte
,
G. F. S.
Whitehead
,
M. J.
Pitcher
,
C. M
Robertson
,
P. M.
Sharp
,
M. S.
Dyer
,
Jo.
Alaria
,
J. B.
Claridge
,
G. R.
Darling
,
D. R.
Allan
,
G.
Winter
,
M. J.
Rosseinsky
Diamond Proposal Number(s):
[15777]
Open Access
Abstract: Hexaferrites are an important class of magnetic oxides with applications in data storage and electronics. Their crystal structures are highly modular, consisting of Fe- or Ba-rich close-packed blocks that can be stacked in different sequences to form a multitude of unique structures, producing large anisotropic unit cells with lattice parameters typically >100 Å along the stacking axis. This has limited atomic-resolution structure solutions to relatively simple examples such as Ba2Zn2Fe12O22, whilst longer stacking sequences have been modelled only in terms of block sequences, with no refinement of individual atomic coordinates or occupancies. This paper describes the growth of a series of complex hexaferrite crystals, their atomic-level structure solution by high-resolution synchrotron X-ray diffraction, electron diffraction and imaging methods, and their physical characterization by magnetometry. The structures include a new hexaferrite stacking sequence, with the longest lattice parameter of any hexaferrite with a fully determined structure.
|
Nov 2018
|
|
|
Open Access
Abstract: The DIALS diffraction-modeling software package has been applied to serial crystallography data. Diffraction modeling is an exercise in determining the experimental parameters, such as incident beam wavelength, crystal unit cell and orientation, and detector geometry, that are most consistent with the observed positions of Bragg spots. These parameters can be refined by nonlinear least-squares fitting. In previous work, it has been challenging to refine both the positions of the sensors (metrology) on multipanel imaging detectors such as the CSPAD and the orientations of all of the crystals studied. Since the optimal models for metrology and crystal orientation are interdependent, alternate cycles of panel refinement and crystal refinement have been required. To simplify the process, a sparse linear algebra technique for solving the normal equations was implemented, allowing the detector panels to be refined simultaneously against the diffraction from thousands of crystals with excellent computational performance. Separately, it is shown how to refine the metrology of a second CSPAD detector, positioned at a distance of 2.5 m from the crystal, used for recording low-angle reflections. With the ability to jointly refine the detector position against the ensemble of all crystals used for structure determination, it is shown that ensemble refinement greatly reduces the apparent nonisomorphism that is often observed in the unit-cell distributions from still-shot serial crystallography. In addition, it is shown that batching the images by timestamp and re-refining the detector position can realistically model small, time-dependent variations in detector position relative to the sample, and thereby improve the integrated structure-factor intensity signal and heavy-atom anomalous peak heights.
|
Sep 2018
|
|
|
Open Access
Abstract: Combining X-ray diffraction data from multiple samples requires determination of the symmetry and resolution of any indexing ambiguity. For the partial data sets typical of in situ room-temperature experiments, determination of the correct symmetry is often not straightforward. The potential for indexing ambiguity in polar space groups is also an issue, although methods to resolve this are available if the true symmetry is known. Here, a method is presented to simultaneously resolve the determination of the Patterson symmetry and the indexing ambiguity for partial data sets.
|
May 2018
|
|