I03-Macromolecular Crystallography
|
Takashi
Miura
,
Tika R.
Malla
,
Lennart
Brewitz
,
Anthony
Tumber
,
Eidarus
Salah
,
Kang Ju
Lee
,
Naohiro
Terasaka
,
C. David
Owen
,
Claire
Strain-Damerell
,
Petra
Lukacik
,
Martin A.
Walsh
,
Akane
Kawamura
,
Christopher J.
Schofield
,
Takayuki
Katoh
,
Hiroaki
Suga
Diamond Proposal Number(s):
[27088]
Open Access
Abstract: Due to their constrained conformations, cyclic β2,3-amino acids (cβAA) are key building blocks that can fold peptides into compact and rigid structures, improving peptidase resistance and binding affinity to target proteins, due to their constrained conformations. Although the translation efficiency of cβAAs is generally low, our engineered tRNA, referred to as tRNAPro1E2, enabled efficient incorporation of cβAAs into peptide libraries using the flexible in vitro translation (FIT) system. Here we report on the design and application of a macrocyclic peptide library incorporating three kinds of cβAAs: (1R,2S)-2-aminocyclopentane carboxylic acid (β1), (1S,2S)-2-aminocyclohexane carboxylic acid (β2), and (1R,2R)-2-aminocyclopentane carboxylic acid. This library was applied to an in vitro selection against the SARS-CoV-2 main protease (Mpro). The resultant peptides, BM3 and BM7, bearing one β2 and two β1, exhibited potent inhibitory activities with IC50 values of 40 nM and 20 nM, respectively. BM3 and BM7 also showed remarkable serum stability with half-lives of 48 h and >168 h, respectively. Notably, BM3A and BM7A, wherein the cβAAs were substituted with alanine, lost their inhibitory activities against Mpro and displayed substantially shorter serum half-lives. This observation underscores the significant contribution of cβAA to the activity and stability of peptides. Overall, our results highlight the potential of cβAA in generating potent and highly stable macrocyclic peptides with drug-like properties.
|
Mar 2024
|
|
|
Open Access
Abstract: The SARS-CoV-2 papain-like protease (PLpro) is an antiviral drug target that catalyzes the hydrolysis of the viral polyproteins pp1a/1ab, so releasing the non-structural proteins (nsps) 1–3 that are essential for the coronavirus lifecycle. The LXGG↓X motif in pp1a/1ab is crucial for recognition and cleavage by PLpro. We describe molecular dynamics, docking, and quantum mechanics/molecular mechanics (QM/MM) calculations to investigate how oligopeptide substrates derived from the viral polyprotein bind to PLpro. The results reveal how the substrate sequence affects the efficiency of PLpro-catalyzed hydrolysis. In particular, a proline at the P2′ position promotes catalysis, as validated by residue substitutions and mass spectrometry-based analyses. Analysis of PLpro catalyzed hydrolysis of LXGG motif-containing oligopeptides derived from human proteins suggests that factors beyond the LXGG motif and the presence of a proline residue at P2′ contribute to catalytic efficiency, possibly reflecting the promiscuity of PLpro. The results will help in identifying PLpro substrates and guiding inhibitor design.
|
Oct 2023
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Vijil
Chenthamarakshan
,
Samuel C.
Hoffman
,
C. David
Owen
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
Daren
Fearon
,
Tika R.
Malla
,
Anthony
Tumber
,
Christopher J.
Schofield
,
Helen M. E.
Duyvesteyn
,
Wanwisa
Dejnirattisai
,
Loic
Carrique
,
Thomas S.
Walter
,
Gavin R.
Screaton
,
Tetiana
Matviiuk
,
Aleksandra
Mojsilovic
,
Jason
Crain
,
Martin A.
Walsh
,
David I.
Stuart
,
Payel
Das
Diamond Proposal Number(s):
[27995]
Open Access
Abstract: Inhibitor discovery for emerging drug-target proteins is challenging, especially when target structure or active molecules are unknown. Here, we experimentally validate the broad utility of a deep generative framework trained at-scale on protein sequences, small molecules, and their mutual interactions—unbiased toward any specific target. We performed a protein sequence-conditioned sampling on the generative foundation model to design small-molecule inhibitors for two dissimilar targets: the spike protein receptor-binding domain (RBD) and the main protease from SARS-CoV-2. Despite using only the target sequence information during the model inference, micromolar-level inhibition was observed in vitro for two candidates out of four synthesized for each target. The most potent spike RBD inhibitor exhibited activity against several variants in live virus neutralization assays. These results establish that a single, broadly deployable generative foundation model for accelerated inhibitor discovery is effective and efficient, even in the absence of target structure or binder information.
|
Jun 2023
|
|
I03-Macromolecular Crystallography
|
Takashi
Miura
,
Tika R.
Malla
,
C. David
Owen
,
Anthony
Tumber
,
Lennart
Brewitz
,
Michael A.
Mcdonough
,
Eidarus
Salah
,
Naohiro
Terasaka
,
Takayuki
Katoh
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
Halina
Mikolajek
,
Martin A.
Walsh
,
Akane
Kawamura
,
Christopher J.
Schofield
,
Hiroaki
Suga
Diamond Proposal Number(s):
[27088]
Open Access
Abstract: γ-Amino acids can play important roles in the biological activities of natural products; however, the ribosomal incorporation of γ-amino acids into peptides is challenging. Here we report how a selection campaign employing a non-canonical peptide library containing cyclic γ2,4-amino acids resulted in the discovery of very potent inhibitors of the SARS-CoV-2 main protease (Mpro). Two kinds of cyclic γ2,4-amino acids, cis-3-aminocyclobutane carboxylic acid (γ1) and (1R,3S)-3-aminocyclopentane carboxylic acid (γ2), were ribosomally introduced into a library of thioether-macrocyclic peptides. One resultant potent Mpro inhibitor (half-maximal inhibitory concentration = 50 nM), GM4, comprising 13 residues with γ1 at the fourth position, manifests a 5.2 nM dissociation constant. An Mpro:GM4 complex crystal structure reveals the intact inhibitor spans the substrate binding cleft. The γ1 interacts with the S1′ catalytic subsite and contributes to a 12-fold increase in proteolytic stability compared to its alanine-substituted variant. Knowledge of interactions between GM4 and Mpro enabled production of a variant with a 5-fold increase in potency.
|
May 2023
|
|
|
Luiz Carlos
Saramago
,
Marcos V.
Santana
,
Bárbara Figueira
Gomes
,
Rafael Ferreira
Dantas
,
Mario R.
Senger
,
Pedro Henrique
Oliveira Borges
,
Vivian Neuza
Dos Santos Ferreira
,
Alice
Dos Santos Rosa
,
Amanda Resende
Tucci
,
Milene
Dias Miranda
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
C. David
Owen
,
Martin A.
Walsh
,
Sabrina
Baptista Ferreira
,
Floriano Paes
Silva-Junior
Abstract: SARS-CoV-2 is the causative agent of COVID-19 and is responsible for the current global pandemic. The viral genome contains 5 major open reading frames of which the largest ORF1ab codes for two polyproteins, pp1ab and pp1a, which are subsequently cleaved into 16 nonstructural proteins (nsp) by two viral cysteine proteases encoded within the polyproteins. The main protease (Mpro, nsp5) cleaves the majority of the nsp’s, making it essential for viral replication and has been successfully targeted for the development of antivirals. The first oral Mpro inhibitor, nirmatrelvir, was approved for treatment of COVID-19 in late December 2021 in combination with ritonavir as Paxlovid. Increasing the arsenal of antivirals and development of protease inhibitors and other antivirals with a varied mode of action remains a priority to reduce the likelihood for resistance emerging. Here, we report results from an artificial intelligence-driven approach followed by in vitro validation, allowing the identification of five fragment-like Mpro inhibitors with IC50 values ranging from 1.5 to 241 μM. The three most potent molecules (compounds 818, 737, and 183) were tested against SARS-CoV-2 by in vitro replication in Vero E6 and Calu-3 cells. Compound 818 was active in both cell models with an EC50 value comparable to its measured IC50 value. On the other hand, compounds 737 and 183 were only active in Calu-3, a preclinical model of respiratory cells, showing selective indexes twice as high as those for compound 818. We also show that our in silico methodology was successful in identifying both reversible and covalent inhibitors. For instance, compound 818 is a reversible chloromethylamide analogue of 8-methyl-γ-carboline, while compound 737 is an N-pyridyl-isatin that covalently inhibits Mpro. Given the small molecular weights of these fragments, their high binding efficiency in vitro and efficacy in blocking viral replication, these compounds represent good starting points for the development of potent lead molecules targeting the Mpro of SARS-CoV-2.
|
Apr 2023
|
|
VMXm-Versatile Macromolecular Crystallography microfocus
|
Lennart
Brewitz
,
Leo
Dumjahn
,
Yilin
Zhao
,
C. David
Owen
,
Stephen M.
Laidlaw
,
Tika R.
Malla
,
Dung
Nguyen
,
Petra
Lukacik
,
Eidarus
Salah
,
Adam D.
Crawshaw
,
Anna J.
Warren
,
Jose
Trincao
,
Claire
Strain-Damerell
,
Miles W.
Carroll
,
Martin A.
Walsh
,
Christopher J.
Schofield
Diamond Proposal Number(s):
[27088]
Open Access
Abstract: Nirmatrelvir (PF-07321332) is a nitrile-bearing small-molecule inhibitor that, in combination with ritonavir, is used to treat infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Nirmatrelvir interrupts the viral life cycle by inhibiting the SARS-CoV-2 main protease (Mpro), which is essential for processing viral polyproteins into functional nonstructural proteins. We report studies which reveal that derivatives of nirmatrelvir and other Mpro inhibitors with a nonactivated terminal alkyne group positioned similarly to the electrophilic nitrile of nirmatrelvir can efficiently inhibit isolated Mpro and SARS-CoV-2 replication in cells. Mass spectrometric and crystallographic evidence shows that the alkyne derivatives inhibit Mpro by apparent irreversible covalent reactions with the active site cysteine (Cys145), while the analogous nitriles react reversibly. The results highlight the potential for irreversible covalent inhibition of Mpro and other nucleophilic cysteine proteases by alkynes, which, in contrast to nitriles, can be functionalized at their terminal position to optimize inhibition and selectivity, as well as pharmacodynamic and pharmacokinetic properties.
|
Feb 2023
|
|
|
Open Access
Abstract: Since its discovery, bovine theileriosis has caused major socioeconomic losses in sub-Saharan Africa. Acaricide resistance of the intermediate host, paucity of therapeutics, and lack of sufficiently cross-protective vaccines increase the risk of parasite spread due to global warming. Here, we highlight three important areas that require investigation to develop next-generation vaccines.
|
Aug 2022
|
|
I24-Microfocus Macromolecular Crystallography
|
Richard J.
Gildea
,
James
Beilsten-Edmands
,
Danny
Axford
,
Sam
Horrell
,
Pierre
Aller
,
James
Sandy
,
Juan
Sanchez-Weatherby
,
C. David
Owen
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
Robin L.
Owen
,
Martin A.
Walsh
,
Graeme
Winter
Diamond Proposal Number(s):
[26986, 27088]
Open Access
Abstract: In macromolecular crystallography, radiation damage limits the amount of data that can be collected from a single crystal. It is often necessary to merge data sets from multiple crystals; for example, small-wedge data collections from micro-crystals, in situ room-temperature data collections and data collection from membrane proteins in lipidic mesophases. Whilst the indexing and integration of individual data sets may be relatively straightforward with existing software, merging multiple data sets from small wedges presents new challenges. The identification of a consensus symmetry can be problematic, particularly in the presence of a potential indexing ambiguity. Furthermore, the presence of non-isomorphous or poor-quality data sets may reduce the overall quality of the final merged data set. To facilitate and help to optimize the scaling and merging of multiple data sets, a new program, xia2.multiplex, has been developed which takes data sets individually integrated with DIALS and performs symmetry analysis, scaling and merging of multi-crystal data sets. xia2.multiplex also performs analysis of various pathologies that typically affect multi-crystal data sets, including non-isomorphism, radiation damage and preferential orientation. After the description of a number of use cases, the benefit of xia2.multiplex is demonstrated within a wider autoprocessing framework in facilitating a multi-crystal experiment collected as part of in situ room-temperature fragment-screening experiments on the SARS-CoV-2 main protease.
|
Jun 2022
|
|
I03-Macromolecular Crystallography
|
Tika R.
Malla
,
Lennart
Brewitz
,
Dorian-Gabriel
Muntean
,
Hiba
Aslam
,
C. David
Owen
,
Eidarus
Salah
,
Anthony
Tumber
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
Halina
Mikolajek
,
Martin
Walsh
,
Christopher J.
Schofield
Diamond Proposal Number(s):
[27088]
Open Access
Abstract: The SARS-CoV-2 main protease (Mpro) is a medicinal chemistry target for COVID-19 treatment. Given the clinical efficacy of β-lactams as inhibitors of bacterial nucleophilic enzymes, they are of interest as inhibitors of viral nucleophilic serine and cysteine proteases. We describe the synthesis of penicillin derivatives which are potent Mpro inhibitors and investigate their mechanism of inhibition using mass spectrometric and crystallographic analyses. The results suggest that β-lactams have considerable potential as Mpro inhibitors via a mechanism involving reaction with the nucleophilic cysteine to form a stable acyl–enzyme complex as shown by crystallographic analysis. The results highlight the potential for inhibition of viral proteases employing nucleophilic catalysis by β-lactams and related acylating agents.
|
May 2022
|
|
|
Open Access
Abstract: The two SARS-CoV-2 proteases, i.e. the main protease (M pro ) and the papain-like protease (PL pro ), which hydrolyze the viral polypeptide chain giving functional non-structural proteins, are essential for viral replication and are medicinal chemistry targets. We report a high-throughput mass spectrometry (MS)-based assay which directly monitors PL pro catalysis in vitro . The assay was applied to investigate the effect of reported small-molecule PL pro inhibitors and selected M pro inhibitors on PL pro catalysis. The results reveal that some, but not all, PL pro inhibitor potencies differ substantially from those obtained using fluorescence-based assays. Some substrate-competing M pro inhibitors, notably PF-07321332 (nirmatrelvir) which is in clinical development, do not inhibit PL pro . Less selective M pro inhibitors, e.g. auranofin, inhibit PL pro , highlighting the potential for dual PL pro /M pro inhibition. MS-based PL pro assays, which are orthogonal to widely employed fluorescence-based assays, are of utility in validating inhibitor potencies, especially for inhibitors operating by non-covalent mechanisms.
|
Jan 2022
|
|