I03-Macromolecular Crystallography
|
Tomoyuki
Hatano
,
Saravanan
Palani
,
Dimitra
Papatziamou
,
Ralf
Salzer
,
Diorge P.
Souza
,
Daniel
Tamarit
,
Mehul
Makwana
,
Antonia
Potter
,
Alexandra
Haig
,
Wenjue
Xu
,
David
Townsend
,
David
Rochester
,
Dom
Bellini
,
Hamdi M. A.
Hussain
,
Thijs J. G.
Ettema
,
Jan
Lowe
,
Buzz
Baum
,
Nicholas P.
Robinson
,
Mohan
Balasubramanian
Diamond Proposal Number(s):
[21426]
Open Access
Abstract: The ESCRT machinery, comprising of multiple proteins and subcomplexes, is crucial for membrane remodelling in eukaryotic cells, in processes that include ubiquitin-mediated multivesicular body formation, membrane repair, cytokinetic abscission, and virus exit from host cells. This ESCRT system appears to have simpler, ancient origins, since many archaeal species possess homologues of ESCRT-III and Vps4, the components that execute the final membrane scission reaction, where they have been shown to play roles in cytokinesis, extracellular vesicle formation and viral egress. Remarkably, metagenome assemblies of Asgard archaea, the closest known living relatives of eukaryotes, were recently shown to encode homologues of the entire cascade involved in ubiquitin-mediated membrane remodelling, including ubiquitin itself, components of the ESCRT-I and ESCRT-II subcomplexes, and ESCRT-III and Vps4. Here, we explore the phylogeny, structure, and biochemistry of Asgard homologues of the ESCRT machinery and the associated ubiquitylation system. We provide evidence for the ESCRT-I and ESCRT-II subcomplexes being involved in ubiquitin-directed recruitment of ESCRT-III, as it is in eukaryotes. Taken together, our analyses suggest a pre-eukaryotic origin for the ubiquitin-coupled ESCRT system and a likely path of ESCRT evolution via a series of gene duplication and diversification events.
|
Jun 2022
|
|
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[21726]
Open Access
Abstract: In X-ray macromolecular crystallography, cryoprotection of crystals mounted on harvesting loops is achieved when the water in the sample solvent transitions to vitreous ice before crystalline ice forms. This is achieved by rapid cooling in liquid nitrogen or propane. Protocols for protein crystal cryoprotection are based on either increasing the environmental pressure or reducing the water fraction in the solvent. This study presents a new protocol for cryoprotecting crystals. It is based on vapour diffusion dehydration of the crystal drop to reduce the water fraction in the solvent by adding a highly concentrated salt solution, 13 M potassium formate (KF13), directly to the reservoir. Several salt solutions were screened to identify KF13 as optimal. Cryoprotection using the KF13 protocol is non-invasive to the crystal, high throughput and easy to implement, can benefit diffraction resolution and ligand binding, and is very useful in cases with high redundancy such as drug-discovery projects which use very large compound or fragment libraries. An application of KF13 to discover new crystal hits from clear drops of equilibrated crystallization screening plates is also shown.
|
Apr 2022
|
|
Krios I-Titan Krios I at Diamond
|
Abstract: Kinetochores assemble onto specialized centromeric CENP-A nucleosomes (CENP-ANuc) to mediate attachments between chromosomes and the mitotic spindle. We describe cryo-EM structures of the human inner kinetochore CCAN (Constitutive Centromere Associated Network) complex bound to CENP-ANuc reconstituted onto α-satellite DNA. CCAN forms edge-on contacts with CENP-ANuc, while a linker DNA segment of the α-satellite repeat emerges from the fully-wrapped end of the nucleosome to thread through the central CENP-LN channel that tightly grips the DNA. The CENP-TWSX histone-fold module further augments DNA binding and partially wraps the linker DNA in a manner reminiscent of canonical nucleosomes. Our study suggests that the topological entrapment of the linker DNA by CCAN provides a robust mechanism by which kinetochores withstand both pushing and pulling forces exerted by the mitotic spindle.
|
Apr 2022
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[21426]
Open Access
Abstract: The success and speed of atomic structure determination of biological macromolecules by X-ray crystallography depends critically on the availability of diffraction-quality crystals. However, the process of screening crystallization conditions often consumes large amounts of sample and time. An innovative protein crystallization screen formulation called FUSION has been developed to help with the production of useful crystals. The concept behind the formulation of FUSION was to combine the most efficient components from the three MORPHEUS screens into a single screen using a systematic approach. The resulting formulation integrates 96 unique combinations of crystallization additives. Most of these additives are small molecules and ions frequently found in crystal structures of the Protein Data Bank (PDB), where they bind proteins and complexes. The efficiency of FUSION is demonstrated by obtaining high yields of diffraction-quality crystals for seven different test proteins. In the process, two crystal forms not currently in the PDB for the proteins α-amylase and avidin were discovered.
|
Apr 2022
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Muhamamd
Faheem
,
Napoleao
Fonseca Valadares
,
Jose
Brandao-Neto
,
Domenico
Bellini
,
Patrick
Collins
,
Nicholas M.
Pearce
,
Louise
Bird
,
Juliana
Torini De Souza
,
Raymond
Owens
,
Humberto
Pereira
,
Frank
Von Delft
,
João Alexandre Ribeiro Gonçalves
Barbosa
Diamond Proposal Number(s):
[11175]
Open Access
Abstract: Several Schistosoma species cause Schistosomiasis, an endemic disease in 78 countries that is ranked second amongst the parasitic diseases in terms of its socioeconomic impact and human health importance. The drug recommended for treatment by the WHO is praziquantel (PZQ), but there are concerns associated with PZQ, such as the lack of information about its exact mechanism of action, its high price, its effectiveness – which is limited to the parasite’s adult form – and reports of resistance. The parasites lack the de novo purine pathway, rendering them dependent on the purine salvage pathway or host purine bases for nucleotide synthesis. Thus, the Schistosoma purine salvage pathway is an attractive target for the development of necessary and selective new drugs. In this study, the purine nucleotide phosphorylase II (PNP2), a new isoform of PNP1, was submitted to a high-throughput fragment-based hit discovery using a crystallographic screening strategy. PNP2 was crystallized and crystals were soaked with 827 fragments, a subset of the Maybridge 1000 library. X-ray diffraction data was collected and structures were solved. Out of 827-screened fragments we have obtained a total of 19 fragments that show binding to PNP2. 14 of these fragments bind to the active site of PNP2, while five were observed in three other sites. Here we present the first fragment screening against PNP2.
|
Sep 2021
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Hector
Newman
,
Alen
Krajnc
,
Domenico
Bellini
,
Charles J.
Eyermann
,
Grant A.
Boyle
,
Neil
Paterson
,
Katherine E.
Mcauley
,
Robert
Lesniak
,
Mukesh
Gangar
,
Frank
Von Delft
,
Jurgen
Brem
,
Kelly
Chibale
,
Christopher J.
Schofield
,
Christopher G.
Dowson
Diamond Proposal Number(s):
[17884]
Open Access
Abstract: The effectiveness of β-lactam antibiotics is increasingly compromised by β-lactamases. Boron-containing inhibitors are potent serine-β-lactamase inhibitors, but the interactions of boron-based compounds with the penicillin-binding protein (PBP) β-lactam targets have not been extensively studied. We used high-throughput X-ray crystallography to explore reactions of a boron-containing fragment set with the Pseudomonas aeruginosa PBP3 (PaPBP3). Multiple crystal structures reveal that boronic acids react with PBPs to give tricovalently linked complexes bonded to Ser294, Ser349, and Lys484 of PaPBP3; benzoxaboroles react with PaPBP3 via reaction with two nucleophilic serines (Ser294 and Ser349) to give dicovalently linked complexes; and vaborbactam reacts to give a monocovalently linked complex. Modifications of the benzoxaborole scaffold resulted in a moderately potent inhibition of PaPBP3, though no antibacterial activity was observed. Overall, the results further evidence the potential for the development of new classes of boron-based antibiotics, which are not compromised by β-lactamase-driven resistance.
|
Jul 2021
|
|
I04-Macromolecular Crystallography
I23-Long wavelength MX
|
Open Access
Abstract: During metaphase, in response to improper kinetochore-microtubule attachments, the spindle assembly checkpoint (SAC) activates the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex/cyclosome (APC/C). This process is orchestrated by the kinase Mps1, which initiates the assembly of the MCC onto kinetochores through a sequential phosphorylation-dependent signalling cascade. The Mad1-Mad2 complex, which is required to catalyse MCC formation, is targeted to kinetochores through a direct interaction with the phosphorylated conserved domain 1 (CD1) of Bub1. Here, we present the crystal structure of the C-terminal domain of Mad1 (Mad1CTD) bound to two phosphorylated Bub1CD1 peptides at 1.75 Å resolution. This interaction is mediated by phosphorylated Bub1 Thr461, which not only directly interacts with Arg617 of the Mad1 RLK (Arg-Leu-Lys) motif, but also directly acts as an N-terminal cap to the CD1 α-helix dipole. Surprisingly, only one Bub1CD1 peptide binds to the Mad1 homodimer in solution. We suggest that this stoichiometry is due to inherent asymmetry in the coiled-coil of Mad1CTD and has implications for how the Mad1-Bub1 complex at kinetochores promotes efficient MCC assembly.
|
May 2021
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Open Access
Abstract: Kinetochores are large multi-subunit complexes that attach centromeric chromatin to microtubules of the mitotic spindle, enabling sister chromatid segregation in mitosis. The inner kinetochore constitutive centromere associated network (CCAN) complex assembles onto the centromere-specific Cenp-A nucleosome (Cenp-ANuc), thereby coupling the centromere to the microtubule-binding outer kinetochore. CCAN is a conserved 14–16 subunit complex composed of discrete modules. Here, we determined the crystal structure of the Saccharomyces cerevisiae Cenp-HIKHead-TW sub-module, revealing how Cenp-HIK and Cenp-TW interact at the conserved Cenp-HIKHead–Cenp-TW interface. A major interface is formed by the C-terminal anti-parallel α-helices of the histone fold extension (HFE) of the Cenp-T histone fold domain (HFD) combining with α-helix H3 of Cenp-K to create a compact three α-helical bundle. We fitted the Cenp-HIKHead-TW sub-module to the previously determined cryo-EM map of the S. cerevisiae CCAN–Cenp-ANuc complex. This showed that the HEAT repeat domain of Cenp-IHead and C-terminal HFD of Cenp-T of the Cenp-HIKHead-TW sub-module interact with the nucleosome DNA gyre at a site close to the Cenp-ANuc dyad axis. Our structure provides a framework for understanding how Cenp-T links centromeric Cenp-ANuc to the outer kinetochore through its HFD and N-terminal Ndc80-binding motif, respectively.
|
Sep 2020
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Sarah L.
Kidd
,
Elaine
Fowler
,
Till
Reinhardt
,
Thomas
Compton
,
Natalia
Mateu
,
Hector
Newman
,
Dom
Bellini
,
Romain
Talon
,
Joseph
Mcloughlin
,
Tobias
Krojer
,
Anthony
Aimon
,
Anthony
Bradley
,
Michael
Fairhead
,
Paul
Brear
,
Laura
Diaz-Saez
,
Katherine
Mcauley
,
Hannah F.
Sore
,
Andrew
Madin
,
Daniel H.
O'Donovan
,
Kilian
Huber
,
Marko
Hyvonen
,
Frank
Von Delft
,
Christopher G.
Dowson
,
David R.
Spring
Diamond Proposal Number(s):
[18145, 15649, 14303, 14493]
Open Access
Abstract: Organic synthesis underpins the evolution of weak fragment hits into potent lead compounds. Deficiencies within current screening collections often result in the requirement of significant synthetic investment to enable multidirectional fragment growth, limiting the efficiency of the hit evolution process. Diversity-oriented synthesis (DOS)-derived fragment libraries are constructed in an efficient and modular fashion and thus are well-suited to address this challenge. To demonstrate the effective nature of such libraries within fragment-based drug discovery, we herein describe the screening of a 40-member DOS library against three functionally distinct biological targets using X-Ray crystallography. Firstly, we demonstrate the importance for diversity in aiding hit identification with four fragment binders resulting from these efforts. Moreover, we also exemplify the ability to readily access a library of analogues from cheap commercially available materials, which ultimately enabled the exploration of a minimum of four synthetic vectors from each molecule. In total, 10–14 analogues of each hit were rapidly accessed in three to six synthetic steps. Thus, we showcase how DOS-derived fragment libraries enable efficient hit derivatisation and can be utilised to remove the synthetic limitations encountered in early stage fragment-based drug discovery.
|
May 2020
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Abstract: Even with the emergence of antibiotic resistance, penicillin and the wider family of beta-lactams have remained the single most important family of antibiotics. The periasmic/extracytoplasmic targets of penicillin are a family of enzymes with a highly conserved catalytic activity involved in the final stage of bacterial cell wall (peptidoglycan, PG) biosynthesis. Named after their ability to bind penicillin, rather than their catalytic activity these key targets are called penicillin-binding proteins (PBPs).Resistance is predominantly mediated by reducing the target drug concentration via beta-lactamases, however, naturally transformable bacteria have also acquired target mediated resistance by inter-species recombination. Here we focus on structural based interpretations of amino acid alterations associated with the emergence of resistance within clinical isolates and include new PBP3 structures along with new, and improved, PBP-beta-lactam co-structures.
|
Jul 2019
|
|