I09-Surface and Interface Structural Analysis
|
Leanne A. H.
Jones
,
Zongda
Xing
,
Jack E. N.
Swallow
,
Huw
Shiel
,
Thomas J.
Featherstone
,
Matthew J.
Smiles
,
Nicole
Fleck
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Laurence J.
Hardwick
,
David O.
Scanlon
,
Anna
Regoutz
,
Tim D.
Veal
,
Vinod R.
Dhanak
Diamond Proposal Number(s):
[25980]
Open Access
Abstract: A comprehensive study of bulk molybdenum dichalcogenides is presented with the use of soft and hard X-ray photoelectron (SXPS and HAXPES) spectroscopy combined with hybrid density functional theory (DFT). The main core levels of MoS2, MoSe2, and MoTe2 are explored. Laboratory-based X-ray photoelectron spectroscopy (XPS) is used to determine the ionization potential (IP) values of the MoX2 series as 5.86, 5.40, and 5.00 eV for MoSe2, MoSe2, and MoTe2, respectively, enabling the band alignment of the series to be established. Finally, the valence band measurements are compared with the calculated density of states which shows the role of p-d hybridization in these materials. Down the group, an increase in the p-d hybridization from the sulfide to the telluride is observed, explained by the configuration energy of the chalcogen p orbitals becoming closer to that of the valence Mo 4d orbitals. This pushes the valence band maximum closer to the vacuum level, explaining the decreasing IP down the series. High-resolution SXPS and HAXPES core-level spectra address the shortcomings of the XPS analysis in the literature. Furthermore, the experimentally determined band alignment can be used to inform future device work.
|
Dec 2022
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[24219, 31069]
Abstract: Ga
2
O
3
is emerging as a promising wide band-gap semiconductor for high-power electronics and deep ultraviolet optoelectronics. It is highly desirable to dope it with controllable carrier concentrations for different device applications. This work reports a combined photoemission spectroscopy and theoretical calculation study on the electronic structure of Si doped
Ga
2
O
3
films with carrier concentration varying from
4.6
×
10
18
c
m
−
3
to
2.6
×
10
20
c
m
−
3
. Hard x-ray photoelectron spectroscopy was used to directly measure the widening of the band gap as a result of occupation of conduction band and band-gap renormalization associated with many-body interactions. A large band-gap renormalization of 0.3 eV was directly observed in heavily doped
Ga
2
O
3
. Supplemented with hybrid density functional theory calculations, we demonstrated that the band-gap renormalization results from the decrease in energy of the conduction band edge driven by the mutual electrostatic interaction between added electrons. Moreover, our work reveals that Si is a superior dopant over Ge and Sn, because
Si
3
s
forms a resonant donor state above the conduction band minimum, leaving the host conduction band mostly unperturbed and a high mobility is maintained though the doping level is high. Insights of the present work have significant implications in doping optimization of
Ga
2
O
3
and realization of optoelectronic devices.
|
Nov 2022
|
|
I09-Surface and Interface Structural Analysis
|
Adam J.
Jackson
,
Benjamin J.
Parrett
,
Joe
Willis
,
Alex M.
Ganose
,
W. W. Winnie
Leung
,
Yuhan
Liu
,
Benjamin A. D.
Williamson
,
Timur K.
Kim
,
Moritz
Hoesch
,
Larissa S. I.
Veiga
,
Raman
Kalra
,
Jens
Neu
,
Charles A.
Schmuttenmaer
,
Tien-Lin
Lee
,
Anna
Regoutz
,
Tung-Chun
Lee
,
Tim D.
Veal
,
Robert G.
Palgrave
,
Robin
Perry
,
David O.
Scanlon
Diamond Proposal Number(s):
[24449]
Open Access
Abstract: Transparent conducting oxides have become ubiquitous in modern optoelectronics. However, the number of oxides that are transparent to visible light and have the metallic-like conductivity necessary for applications is limited to a handful of systems that have been known for the past 40 years. In this work, we use hybrid density functional theory and defect chemistry analysis to demonstrate that tri-rutile zinc antimonate, ZnSb2O6, is an ideal transparent conducting oxide and to identify gallium as the optimal dopant to yield high conductivity and transparency. To validate our computational predictions, we have synthesized both powder samples and single crystals of Ga-doped ZnSb2O6 which conclusively show behavior consistent with a degenerate transparent conducting oxide. This study demonstrates the possibility of a family of Sb(V)-containing oxides for transparent conducting oxide and power electronics applications.
|
Oct 2022
|
|
I09-Surface and Interface Structural Analysis
|
Theodore D. C.
Hobson
,
Huw
Shiel
,
Christopher N.
Savory
,
Jack E. N.
Swallow
,
Leanne A. H.
Jones
,
Thomas J.
Featherstone
,
Matthew J.
Smiles
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Bhaskar
Das
,
Chris
Leighton
,
Guillaume
Zoppi
,
Vin R.
Dhanak
,
David O.
Scanlon
,
Tim D.
Veal
,
Ken
Durose
,
Jonathan D.
Major
Diamond Proposal Number(s):
[23160]
Open Access
Abstract: Antimony selenide (Sb2Se3) is a promising absorber material for thin-film
photovoltaics. However, certain areas of fundamental understanding of this material
remain incomplete and this presents a barrier to further efficiency gains. In particular,
recent studies have highlighted the role of majority carrier type and extrinsic doping
in drastically changing the performance of high efficiency devices [1]. Herein, Sndoped
Sb2Se3 bulk crystals are shown to exhibit p-type conductivity using Hall effect
and hot-probe measurements. The measured conductivities are higher than those
achieved through native defects alone, but with a carrier density (up to 7.4 × 1014
cm−3) several orders of magnitude smaller than the quantity of Sn included in the
source material. Additionally, a combination of ultraviolet, X-ray and hard X-ray
photoemission spectroscopies are employed to obtain a non-destructive depth profile of
the valence band maximum, confirming p-type conductivity and indicating a majority
carrier type inversion layer at the surface. Finally, these results are supported by
density functional theory calculations of the defect formation energies in Sn-doped
Sb2Se3, showing a possible limit on the carrier concentration achievable with Sn as
a dopant. This study sheds light on the effectiveness of Sn as a p-type dopant in
Sb2Se3 and highlights avenues for further optimisation of doped Sb2Se3 for solar energy
devices.
|
Sep 2022
|
|
I06-Nanoscience
|
Dong
Li
,
Bonan
Zhu
,
Dirk
Backes
,
Larissa S. I.
Veiga
,
Tien-Lin
Lee
,
Hongguang
Wang
,
Qian
He
,
Pinku
Roy
,
Jiaye
Zhang
,
Jueli
Shi
,
Aiping
Chen
,
Peter A.
Van Aken
,
Quanxi
Jia
,
Sarnjeet S.
Dhesi
,
David O.
Scanlon
,
Kelvin H. L.
Zhang
,
Weiwei
Li
Diamond Proposal Number(s):
[25425, 26901, 29616]
Abstract: Strain engineering of epitaxial transition metal oxide heterostructures offers an intriguing opportunity to control electronic structures by modifying the interplay between spin, charge, orbital, and lattice degrees of freedom. Here, we demonstrate that the electronic structure, magnetic and transport properties of
La
0.9
Ba
0.1
MnO
3
thin films can be effectively controlled by epitaxial strain. Spectroscopic studies and first-principles calculations reveal that the orbital occupancy in Mn
e
g
orbitals can be switched from the
d
3
z
2
−
r
2
orbital to the
d
x
2
−
y
2
orbital by varying the strain from compressive to tensile. The change of orbital occupancy associated with Mn
3
d
-O
2
p
hybridization leads to dramatic modulation of the magnetic and electronic properties of strained
La
0.9
Ba
0.1
MnO
3
thin films. Under moderate tensile strain, an emergent ferromagnetic insulating state with an enhanced ferromagnetic Curie temperature of 215 K is achieved. These findings not only deepen our understanding of electronic structures, magnetic and transport properties in the
La
0.9
Ba
0.1
MnO
3
system, but also demonstrate the use of epitaxial strain as an effective knob to tune the electronic structures and related physical properties for potential spintronic device applications.
|
Apr 2022
|
|
I09-Surface and Interface Structural Analysis
|
Jiaye
Zhang
,
Joe
Willis
,
Zhenni
Yang
,
Xu
Lian
,
Wei
Chen
,
Lai-Sen
Wang
,
Xiangyu
Xu
,
Tien-Lin
Lee
,
Lang
Chen
,
David O.
Scanlon
,
Kelvin H. I.
Zhang
Diamond Proposal Number(s):
[24219]
Open Access
Abstract: Deep UV transparent thin films have recently attracted considerable attention owing to their potential in UV and organic-based optoelectronics. Here, we report the achievement of a deep UV transparent and highly conductive thin film based on Si-doped Ga2O3 (SGO) with high conductivity of 2500 S/cm. The SGO thin films exhibit high transparency over a wide spectrum ranging from visible light to deep UV wavelength and, meanwhile, have a very low work-function of approximately 3.2 eV. A combination of photoemission spectroscopy and theoretical studies reveals that the delocalized conduction band derived from Ga 4s orbitals is responsible for the Ga2O3 films’ high conductivity. Furthermore, Si is shown to act as an efficient shallow donor, yielding high mobility up to approximately 60 cm2/Vs. The superior optoelectronic properties of SGO films make it a promising material for use as electrodes in high-power electronics and deep UV and organic-based optoelectronic devices.
|
Mar 2022
|
|
|
Abstract: Cathode materials that have high specific energies and low manufacturing costs are vital for the scaling up of lithium-ion batteries (LIBs) as energy storage solutions. Fe-based intercalation cathodes are highly attractive because of the low cost and the abundance of raw materials. However, existing Fe-based materials, such as LiFePO4, suffer from low capacity due to the large size of the polyanions. Turning to mixed anion systems can be a promising strategy to achieve higher specific capacity. Recently, antiperovskite-structured oxysulfide Li2FeSO has been synthesized and reported to be electrochemically active. In this work, we perform an extensive computational search for iron-based oxysulfides using ab initio random structure searching (AIRSS). By performing an unbiased sampling of the Li–Fe–S–O chemical space, several oxysulfide phases have been discovered, which are predicted to be less than 50 meV/atom from the convex hull and potentially accessible for synthesis. Among the predicted phases, two anti-Ruddlesden–Popper-structured materials Li2Fe2S2O and Li4Fe3S3O2 have been found to be attractive as they have high theoretical capacities with calculated average voltages of 2.9 and 2.5 V, respectively, and their distances to hull are less than 5 meV/atom. By performing nudged-elastic band calculations, we show that the Li-ion transport in these materials takes place by hopping between the nearest neighboring sites with low activation barriers between 0.3 and 0.5 eV. The richness of materials yet to be synthesized in the Li–Fe–S–O phase field illustrates the great opportunity in these mixed anion systems for energy storage applications and beyond.
|
Jan 2022
|
|
I09-Surface and Interface Structural Analysis
|
Jueli
Shi
,
Ethan A.
Rubinstein
,
Weiwei
Li
,
Jiaye
Zhang
,
Ye
Yang
,
Tien-Lin
Lee
,
Changdong
Qin
,
Pengfei
Yan
,
Judith L.
Macmanus-Driscoll
,
David O.
Scanlon
,
Kelvin H.l.
Zhang
Diamond Proposal Number(s):
[24219]
Open Access
Abstract: Oxide semiconductors are key materials in many technologies from flat-panel displays,solar cells to transparent electronics. However, many potential applications are hindered by the lack of high mobility p-type oxide semiconductors due to the localized O-2p derived valence band (VB) structure. In this work, the VB structure modulation is reported for perovskite Ba2BiMO6 (M = Bi, Nb, Ta) via the Bi 6s2 lone pair state to achieve p-type oxide semiconductors with high hole mobility up to 21 cm2 V−1 s−1, and optical bandgaps widely varying from 1.5 to 3.2 eV. Pulsed laser deposition is used to grow high quality epitaxial thin films. Synergistic combination of hard x-ray photoemission, x-ray absorption spectroscopies, and density functional theory calculations are used to gain insight into the electronic structure of Ba2BiMO6. The high mobility is attributed to the highly dispersive VB edges contributed from the strong coupling of Bi 6s with O 2p at the top of VB that lead to low hole effective masses (0.4–0.7 me). Large variation in bandgaps results from the change in the energy positions of unoccupied Bi 6s orbital or Nb/Ta d orbitals that form the bottom of conduction band. P–N junction diode constructed with p-type Ba2BiTaO6 and n-type Nb doped SrTiO3 exhibits high rectifying ratio of 1.3 × 104 at ±3 V, showing great potential in fabricating high-quality devices. This work provides deep insight into the electronic structure of Bi3+ based perovskites and guides the development of new p-type oxide semiconductors.
|
Jan 2022
|
|
|
Abstract: Transparent conductive oxides (TCOs) exhibiting high near-infrared (NIR) transmittance are one of the key materials for highly efficient thin-film solar cells with widened spectral sensitivity. To realize excellent NIR transparency in a TCO film, developing a dopant providing high mobility (µ) carriers is quite important. Herein, it is demonstrated that W is a high-μ dopant in rutile SnO2, which is unexpected from the conventional strategy. A combination of electrical transport property measurements and hybrid density functional theory calculations reveals that W behaves as a singly charged donor (W5+) showing minimized ionized impurity scattering. This charge state is realized by the splitting of the W 5d t2g-states originating not only from the octahedral crystal field but also hybridization with the O 2p orbitals, whose contribution has not been considered in transition metal-doped TCOs. Hybridization between metal d orbital and O 2p orbitals would provide a new guide for designing a novel dopant of NIR transparent conductors.
|
Dec 2021
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[21847]
Open Access
Abstract: Here we report the synthesis via ceramic methods of the high-performance Mn-rich Na2.4Al0.4Mn2.6O7 oxygen-redox cathode material for Na-ion batteries which we use as a testbed material to study the effects of Al substitution and subsequent Na excess in the high-capacity, anionic redox-based cathode material Na2Mn3O7. The material shows a stable electrochemical performance, with a specific capacity of 200 mAh g-1 in the 1.5 - 4.7 voltage window at C/20 and capacity retention of 90 % after 40 cycles. Using a combination of electrochemical and structural analysis together with hybrid density functional theory calculations we explain the behaviour of this material with changes in Mn/anionic redox reactions and associated O2 release reactions occurring in the material during electrochemical cycling (Na insertion/extraction) and compare these findings to Na2Mn3O7. We expect that these results will advance understanding of the effect of dopants in Mn-rich cathode materials with oxygen redox activity to pave their way towards real applications in high-performing sodium-ion battery applications.
|
Dec 2021
|
|