I13-1-Coherence
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[18762, 19399]
Open Access
Abstract: Aims: We sought to develop a novel experimental system which enabled application of iodinated contrast media to in vivo plant roots intact in soil and was compatible with time-resolved synchrotron X-ray computed tomography imaging. The system was developed to overcome issues of low contrast to noise within X-ray computed tomography images of plant roots and soil environments, the latter of which can complicate image processing and result in the loss of anatomical information. Methods: To demonstrate the efficacy of the system we employ the novel use of both synchrotron X-ray computed tomography and synchrotron X-ray fluorescence mapping to capture the translocation of the contrast media through root vasculature into the leaves. Results: With the application of contrast media we identify fluid flow in root vasculature and visualise anatomical features, which are otherwise often only observable in ex vivo microscopy, including: the xylem, metaxylem, pith, fibres in aerenchyma and leaf venation. We are also able to observe interactions between aerenchyma cross sectional area and solute transport in the root vasculature with depth. Conclusions: Our novel system was capable of successfully delivering sufficient contrast media into root and leaf tissues such that anatomical features could be visualised and internal fluid transport observed. We propose that our system could be used in future to study internal plant transport mechanisms and parameterise models for fluid flow in plants.
|
Dec 2020
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[17801, 17203]
Abstract: The good biocompatibility and corrosion resistance of the bulk CoCrMo alloy has resulted in it being used in the manufacture of implants and load bearing medical devices. These devices, however, can release wear and corrosion products which differ from the composition of the bulk CoCrMo alloy. The physicochemical characteristics of the particles and the associated in vivo reactivity are dictated by the wear mechanisms and electrochemical conditions at the sites of material loss. Debris released from CoCrMo hip bearings, taper junctions, or cement–stem interfaces can, therefore, have different chemical and morphological characteristics, which provide them with different in vivo toxicities. Here, we propose to assess and compare the characteristics of the particles released in vivo from CoCrMo tapers and cement–stem interfaces which have received less attention compared to debris originating from the hip bearings. The study uses state‐of‐art characterization techniques to provide a detailed understanding of the size, morphology, composition, and chemistry of the particles liberated from the wear and corrosion flakes from revised hip replacements, with an enzymatic treatment. The phase analyses identified Cr2O3 nanoparticles released from tapers and cement–stem interfaces, whose composition did not vary with origin or particle morphology. The size distributions showed significantly smaller particles were released from the stems, compared to the particles originating from the corresponding tapers. The investigation demonstrates that the tribocorrosive processes occurring at the taper and stem interfaces both result in Cr2O3 nanoparticle formation.
|
Jun 2020
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[15971, 17888]
Abstract: Rhizosphere soil has distinct physical and chemical properties from bulk soil. However, besides root induced physical changes, chemical changes have not been extensively measured in situ on the pore scale.
In this study we couple structural information, previously obtained using synchrotron X‐ray computed tomography (XCT), with synchrotron X‐ray Fluorescence (SR‐XRF) microscopy and X‐ray Absorption Near‐Edge Structure (XANES) to unravel chemical changes induced by plant roots.
Our results suggest that iron (Fe) and sulfur (S) increase notably in the direct vicinity of the root via solubilization and microbial activity. XANES further shows that Fe is slightly reduced, S is increasingly transformed into sulfate (SO42‐) and that phosphorus (P) is increasable adsorbed to humic substances in this enrichment zone. In addition, the ferrihydrite fraction decreases drastically suggesting the preferential dissolution and the formation of more stable Fe‐oxides. Additionally, the increased transformation of organic S to sulfate indicates that the microbial activity in this zone is increased. These changes in soil chemistry correspond to the soil compaction zone as previously measured via X‐ray CT.
The fact that these changes are co‐located near the root and the compaction zone suggests that decreased permeability due to soil structural changes acts as a barrier creating a zone with increased rhizosphere chemical interactions via surface mediated processes, microbial activity and acidification.
|
Oct 2019
|
|
I18-Microfocus Spectroscopy
|
Phillip L.
Manning
,
Nicholas P.
Edwards
,
Uwe
Bergmann
,
Jennifer
Anne
,
William
Sellers
,
Arjen
Van Veelen
,
Dimosthenis
Sokaras
,
Victoria M.
Egerton
,
Roberto
Alonso-mori
,
Konstantin
Ignatyev
,
Bart E.
Van Dongen
,
Kazumasa
Wakamatsu
,
Shosuke
Ito
,
Fabien
Knoll
,
Roy A.
Wogelius
Diamond Proposal Number(s):
[12948, 11865, 9488, 8597, 7749]
Open Access
Abstract: Recent progress has been made in paleontology with respect to resolving pigmentation in fossil material. Morphological identification of fossilized melanosomes has been one approach, while a second methodology using chemical imaging and spectroscopy has also provided critical information particularly concerning eumelanin (black pigment) residue. In this work we develop the chemical imaging methodology to show that organosulfur-Zn complexes are indicators of pheomelanin (red pigment) in extant and fossil soft tissue and that the mapping of these residual biochemical compounds can be used to restore melanin pigment distribution in a 3 million year old extinct mammal species (Apodemus atavus). Synchotron Rapid Scanning X-ray Fluorescence imaging showed that the distributions of Zn and organic S are correlated within this fossil fur just as in pheomelanin-rich modern integument. Furthermore, Zn coordination chemistry within this fossil fur is closely comparable to that determined from pheomelanin-rich fur and hair standards. The non-destructive methods presented here provide a protocol for detecting residual pheomelanin in precious specimens.
|
May 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[11412]
Open Access
Abstract: Neptunium and uranium are important radionuclides in many aspects of the nuclear fuel cycle and are often present in radioactive wastes which require long term management. Understanding the environmental behaviour and mobility of these actinides is essential in underpinning remediation strategies and safety assessments for wastes containing these radionuclides. By combining state-of-the-art X-ray techniques (synchrotron-based Grazing Incidence XAS, and XPS) with wet chemistry techniques (ICP-MS, liquid scintillation counting and UV-Vis spectroscopy), we determined that contrary to uranium(VI), neptunium(V) interaction with magnetite is not significantly affected by the presence of bicarbonate. Uranium interactions with a magnetite surface resulted in XAS and XPS signals dominated by surface complexes of U(VI), while neptunium on the surface of magnetite was dominated by Np(IV) species. UV-Vis spectroscopy on the aqueous Np(V) species before and after interaction with magnetite showed different speciation due to the presence of carbonate. Interestingly, in the presence of bicarbonate after equilibration with magnetite, an unknown aqueous NpO2+ species was detected using UV-Vis spectroscopy, which we postulate is a ternary complex of Np(V) with carbonate and (likely) an iron species. Regardless, the Np speciation in the aqueous phase (Np(V)) and on the magnetite (111) surfaces (Np(IV)) indicate that with and without bicarbonate the interaction of Np(V) with magnetite proceeds via a surface mediated reduction mechanism. Overall, the results presented highlight the differences between uranium and neptunium interaction with magnetite, and reaffirm the potential importance of bicarbonate present in the aqueous phase.
|
Feb 2019
|
|
I18-Microfocus Spectroscopy
|
Jennifer
Anne
,
Roya A.
Wogelius
,
Nicholas P.
Edwards
,
Arjen
Van Veelen
,
Michael
Buckley
,
William
Sellers
,
Uwe
Bergmann
,
Dimosthenis
Sokaras
,
Roberto
Alonso-mori
,
Virginia L.
Harvey
,
Victoria M.
Egerton
,
Phillip L.
Manning
Diamond Proposal Number(s):
[9488]
Abstract: Trace element inventories are known to correlate with specific histological structures in bone, reflecting organismal physiology and life histories. By studying trace elements in fossilised bone, particularly in individuals with cyclic bone growth (alternating fast/slow bone deposition), we can improve our understanding of the physiology of extinct organisms. In this study we present the first direct comparison between optical histology (bone tissue identification) and synchrotron-based chemical mapping, quantification, and characterisation of trace elements (biochemistry) within cyclic growth tissues, in this case within bones of a cave hyaena (Crocuta crocuta spelaea). Results show distributions of zinc, an element strongly associated with active ossification and bone growth, correlating with (1) fast-growing tissue of zonal bone (cyclic growth) in an extinct hyaena and (2) secondary osteons (remodelling) in both extant and extinct hyaena. Concentrations and coordination chemistry of zinc within the fossil sample are comparable to those seen in extant bone suggesting that zinc is endogenous to the sample and that the chemistry of bone growth has been preserved for 40 ka. These results demonstrate that the study of trace elements as part of the histochemistry has wide utility for reconstructing growth, diet and other lifestyle factors in archaeological and fossil bone.
|
Oct 2018
|
|
B18-Core EXAFS
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[11865]
Abstract: Endochondral ossification is the process by which bone is deposited during development, growth and repair of the skeleton. The regulation of endochondral ossification is extremely important as developmental flaws can result in severe skeletal abnormalities. However, until recently the limitations of available methodologies have restricted our understanding of this fundamental physiological process. The analysis of chemical elements that are intimately associated with discrete biochemical stages of ossification within bone could provide new insight to such processes at the atomic level. In this study we present detailed characterisation of the elemental inventory within actively ossifying bone during development in mice using synchrotron microfocus X-ray techniques. X-ray fluorescence imaging showed differential distributions of Zn, Sr and Ca, which may be correlated with the processes of cartilage replacement (Zn), active ossification (Sr) and fully ossified tissues (Ca). Quantification of these trace elements confirmed their relative distributions. These results represent the first detailed visualisation of local endochondral ossification processes using trace elemental mapping. Such studies have far reaching applications not only in the medical field, but to our understanding of the evolution of the bony skeleton given that trace element inventories have been shown to be preserved through deep time (millions of years).
|
Mar 2017
|
|
I18-Microfocus Spectroscopy
|
Nicholas
Edwards
,
Arjen
Van Veelen
,
Jennifer
Anné
,
Phillip
Manning
,
Uwe
Bergmann
,
William
Sellers
,
Victoria
Egerton
,
Dimosthenis
Sokaras
,
Roberto
Alonso-mori
,
Kazumasa
Wakamatsu
,
Shosuke
Ito
,
Roy A.
Wogelius
Diamond Proposal Number(s):
[11865, 12948]
Open Access
Abstract: Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms.
|
Sep 2016
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[9488, 8597]
Open Access
Abstract: Bone remodelling is a crucial biological process needed to maintain elemental homeostasis. It is important to understand the trace elemental inventories that govern these processes as malfunctions in bone remodelling can have devastating effects on an organism. In this study, we use a combination of X-ray techniques to map, quantify, and characterise the coordination chemistry of trace elements within the highly remodelled bone tissues of extant and extinct Sirenia (manatees and dugongs). The dense bone structure and unique body chemistry of sirenians represent ideal tissues for studying both high remodelling rates as well as unique fossilisation pathways. Here, elemental maps revealed uncorrelated patterning of Ca and Zn within secondary osteons in both extant and fossil sirenians, as well as elevated Sr within the connecting canals of fossil sirenians. Concentrations of these elements are comparable between extant and fossil material indicating geochemical processing of the fossil bone has been minimal. Zn was found to be bound in the same coordination within the apatite structure in both extant and fossil bone. Accurate quantification of trace elements in extant material was only possible when the organic constituents of the bone were included. The comparable distributions, concentrations, and chemical coordination of these physiologically important trace elements indicate the chemistry of bone remodelling has been preserved for 19 million years. This study signifies the powerful potential of merging histological and chemical techniques in the understanding of physiological processes in both extant and extinct vertebrates.
|
Mar 2016
|
|
I18-Microfocus Spectroscopy
|
Victoria
Egerton
,
R A
Wogelius
,
Mark A.
Norell
,
Nicholas
Edwards
,
William
Sellers
,
Uwe
Bergmann
,
Dimosthenis
Sokaras
,
Roberto
Alonso-mori
,
Konstantin
Ignatyev
,
Arjen
Van Veelen
,
Jennifer
Anné
,
Bart
Van Dongen
,
Fabien
Knoll
,
Phillip
Manning
Diamond Proposal Number(s):
[8597, 9488]
Open Access
Abstract: The preservation of fossils reflects the interplay of inorganic and organic chemical processes, which should be clearly differentiated to make interpretations about the biology of extinct organisms. A new coliiformes bird (mouse bird) from the [similar]50 million year old Green River Formation (Wyoming, USA) has here been analysed using synchrotron X-ray fluorescence and environmental scanning electron microscopy with an attached X-ray energy dispersive system (ESEM-EDS). The concentration and distribution of 16 elements (Si, P, S, Cl, K, Ca, Ti, Mg, Fe, Ni, Cu, Zn, As, Br, Ba, Hg) has been mapped for individual points on the sample. S, Cu and Zn map distinctly within visibly preserved feathers and X-ray Absorption Spectroscopy (XAS) shows that S and Cu within the feathers are organically bound in a similar manner to modern feathers. The morphological preservation of the feathers, on both macro- and microscopic scales, is variable throughout the fossil and the differences in the lateral microfacies have resulted in a morphological preservation gradient. This study clearly differentiates endogenous organic remains from those representing exogenous overprinted geochemical precipitates and illustrates the chemical complexity of the overall taphonomic process.
|
Jan 2015
|
|