I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Christian
Roth
,
Olga V.
Moroz
,
Suzan A. D.
Miranda
,
Lucas
Jahn
,
Elena V.
Blagova
,
Andrey A.
Lebedev
,
Dorotea R.
Segura
,
Mary A.
Stringer
,
Esben P.
Friis
,
Joao P. L.
Franco Cairo
,
Gideon J.
Davies
,
Keith S.
Wilson
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: Endo-galactosaminidases are an underexplored family of enzymes involved in the degradation of galactosaminogalactan (GAG) and other galactosamine-containing cationic exopolysaccharides produced by fungi and bacteria. These exopolysaccharides are part of the cell wall and extracellular matrix of microbial communities. Currently, these galactosaminidases are found in three distinct CAZy families: GH114, GH135 and GH166. Despite the widespread occurrence of these enzymes in nearly all bacterial and fungal clades, only limited biochemical and structural data are available for these three groups. To expand our knowledge of endo-galactosaminidases, we selected several sequences predicted to encode endo-galactosaminidases and produced them recombinantly for structural and functional studies. Only very few predicted proteins could be produced in soluble form, and activity against bacterial Pel (pellicle) polysaccharide could only be confirmed for one enzyme. Here, we report the structures of two bacterial and one fungal enzyme. Whereas the fungal enzyme belongs to family GH114, the two bacterial enzymes do not lie in the current GH families but instead define a new family, GH191. During structure solution we realized that crystals of all three enzymes had various defects including twinning and partial disorder, which in the case of a more severe pathology in one of the structures required the design of a specialized refinement/model-building protocol. Comparison of the structures revealed several features that might be responsible for the described activity pattern and substrate specificity compared with other GAG-degrading enzymes.
|
May 2025
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Alexandra
Males
,
Olga V.
Moroz
,
Elena
Blagova
,
Astrid
Munch
,
Gustav H.
Hansen
,
Annette H.
Johansen
,
Lars H.
Østergaard
,
Dorotea R.
Segura
,
Alexander
Eddenden
,
Anne V.
Due
,
Martin
Gudmand
,
Jesper
Salomon
,
Sebastian R.
Sørensen
,
Joao Paulo L.
Franco Cairo
,
Mark
Nitz
,
Roland A.
Pache
,
Rebecca M.
Vejborg
,
Sandeep
Bhosale
,
David J.
Vocadlo
,
Gideon J.
Davies
,
Keith S.
Wilson
Diamond Proposal Number(s):
[13587]
Open Access
Abstract: Microorganisms are known to secrete copious amounts of extracellular polymeric substances (EPS) that form complex matrices around the cells to shield them against external stresses, to maintain structural integrity and to influence their environment. Many microorganisms also secrete enzymes that are capable of remodelling or degrading EPS in response to various environmental cues. One key enzyme class is the poly-β-1,6-linked N-acetyl-D-glucosamine (PNAG)-degrading glycoside hydrolases, of which the canonical member is dispersin B (DspB) from CAZy family GH20. We sought to test the hypothesis that PNAG-degrading enzymes would be present across family GH20, resulting in expansion of the sequence and structural space and thus the availability of PNAGases. Phylogenetic analysis revealed that several microorganisms contain potential DspB-like enzymes. Six of these were expressed and characterized, and four crystal structures were determined (two of which were in complex with the established GH20 inhibitor 6-acetamido-6-deoxy-castanospermine and one with a bespoke disaccharide β-1,6-linked thiazoline inhibitor). One enzyme expressed rather poorly, which restricted crystal screening and did not allow activity measurements. Using synthetic PNAG oligomers and MALDI-TOF analysis, two of the five enzymes tested showed preferential endo hydrolytic activity. Their sequences, having only 26% identity to the pioneer enzyme DspB, highlight the considerable array of previously unconsidered dispersins in nature, greatly expanding the range of potential dispersin backbones available for societal application and engineering.
|
Mar 2025
|
|
I03-Macromolecular Crystallography
|
Isabelle B.
Pickles
,
Yurong
Chen
,
Olga
Moroz
,
Haley A.
Brown
,
Casper
De Boer
,
Zachary
Armstrong
,
Nicholas G. S.
Mcgregor
,
Marta
Artola
,
Jeroen D. C.
Codée
,
Nicole M.
Koropatkin
,
Herman S.
Overkleeft
,
Gideon J.
Davies
Diamond Proposal Number(s):
[24948, 32736]
Open Access
Abstract: α-Amylases are the workhorse enzymes of starch degradation. They are central to human health, including as targets for anti-diabetic compounds, but are also the key enzymes in the industrial processing of starch for biofuels, corn syrups, brewing and detergents. Dissection of the activity, specificity and stability of α-amylases is crucial to understanding their biology and allowing their exploitation. Yet, functional characterization lags behind DNA sequencing and genomics; and new tools are required for rapid analysis of α-amylase function. Here, we design, synthesize and apply new branched α-amylase activity-based probes. Using both α-1,6 branched and unbranched α-1,4 maltobiose activity-based probes we were able to explore the stability and substrate specificity of both a panel of human gut microbial α-amylases and a panel of industrially relevant α-amylases. We also demonstrate how we can detect and annotate the substrate specificity of α-amylases in the complex cell lysate of both a prominent gut microbe and a diverse compost sample by in-gel fluorescence and mass spectrometry. A toolbox of starch-active activity-based probes will enable rapid functional dissection of α-amylases. We envisage activity-based probes contributing to better selection and engineering of enzymes for industrial application as well as fundamental analysis of enzymes in human health.
|
Nov 2024
|
|
I03-Macromolecular Crystallography
|
Yu
Liu
,
Ganka
Bineva-Todd
,
Richard W.
Meek
,
Laura
Mazo
,
Beatriz
Piniello
,
Olga
Moroz
,
Sean A.
Burnap
,
Nadima
Begum
,
André
Ohara
,
Chloe
Roustan
,
Sara
Tomita
,
Svend
Kjaer
,
Karen
Polizzi
,
Weston B.
Struwe
,
Carme
Rovira
,
Gideon J.
Davies
,
Benjamin
Schumann
Diamond Proposal Number(s):
[32736]
Open Access
Abstract: Correct elaboration of N-linked glycans in the secretory pathway of human cells is essential in physiology. Early N-glycan biosynthesis follows an assembly line principle before undergoing crucial elaboration points that feature the sequential incorporation of the sugar N-acetylglucosamine (GlcNAc). The activity of GlcNAc transferase V (MGAT5) primes the biosynthesis of an N-glycan antenna that is heavily upregulated in cancer. Still, the functional relevance and substrate choice of MGAT5 are ill-defined. Here, we employ protein engineering to develop a bioorthogonal substrate analog for the activity of MGAT5. Chemoenzymatic synthesis is used to produce a collection of nucleotide-sugar analogs with bulky, bioorthogonal acylamide side chains. We find that WT-MGAT5 displays considerable activity toward such substrate analogues. Protein engineering yields an MGAT5 variant that loses activity against the native nucleotide sugar and increases activity toward a 4-azidobutyramide-containing substrate analogue. By such restriction of substrate specificity, we show that the orthogonal enzyme–substrate pair is suitable to bioorthogonally tag glycoproteins. Through X-ray crystallography and molecular dynamics simulations, we establish the structural basis of MGAT5 engineering, informing the design rules for bioorthogonal precision chemical tools.
|
Oct 2024
|
|
I03-Macromolecular Crystallography
|
Valentina
Borlandelli
,
Wendy
Offen
,
Olga
Moroz
,
Alba
Nin-Hill
,
Nicholas
Mcgregor
,
Lars
Binkhorst
,
Akihiro
Ishiwata
,
Zachary
Armstrong
,
Marta
Artola
,
Carme
Rovira
,
Gideon J.
Davies
,
Herman S.
Overkleeft
Diamond Proposal Number(s):
[24948]
Open Access
Abstract: GH127 and GH146 microorganismal retaining β-l-arabinofuranosidases, expressed by human gut microbiomes, feature an atypical catalytic domain and an unusual mechanism of action. We recently reported that both Bacteroides thetaiotaomicron BtGH146 and Bifidobacterium longum HypBA1 are inhibited by β-l-arabinofuranosyl cyclophellitol epoxide, supporting the action of a zinc-coordinated cysteine as a catalytic nucleophile, where in most retaining GH families, an aspartate or glutamate is employed. This work presents a panel of β-l-arabinofuranosyl cyclophellitol epoxides and aziridines as mechanism-based BtGH146/HypBA1 inhibitors and activity-based probes. The β-l-arabinofuranosyl cyclophellitol aziridines both inhibit and label β-l-arabinofuranosidase efficiently (however with different activities), whereas the epoxide-derived probes favor BtGH146 over HypBA1. These findings are accompanied by X-ray structural analysis of the unmodified β-l-arabinofuranosyl cyclophellitol aziridine in complex with both isozymes, which were shown to react by nucleophilic opening of the aziridine, at the pseudoanomeric carbon, by the active site cysteine nucleophile to form a stable thioether bond. Altogether, our activity-based probes may serve as chemical tools for the detection and identification of low-abundance β-l-arabinofuranosidases in complex biological samples.
|
Dec 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Olga
Moroz
,
Elena
Blagova
,
Andrey A.
Lebedev
,
Lars K.
Skov
,
Roland A.
Pache
,
Kirk M.
Schnorr
,
Lars
Kiemer
,
Esben P.
Friis
,
Søren
Nymand-Grarup
,
Li
Ming
,
Liu
Ye
,
Mikkel
Klausen
,
Marianne T.
Cohn
,
Esben G. W.
Schmidt
,
Gideon J.
Davies
,
Keith S.
Wilson
Diamond Proposal Number(s):
[7864, 13587, 24948]
Open Access
Abstract: Muramidases (also known as lysozymes) hydrolyse the peptidoglycan component of the bacterial cell wall and are found in many glycoside hydrolase (GH) families. Similar to other glycoside hydrolases, muramidases sometimes have noncatalytic domains that facilitate their interaction with the substrate. Here, the identification, characterization and X-ray structure of a novel fungal GH24 muramidase from Trichophaea saccata is first described, in which an SH3-like cell-wall-binding domain (CWBD) was identified by structure comparison in addition to its catalytic domain. Further, a complex between a triglycine peptide and the CWBD from T. saccata is presented that shows a possible anchor point of the peptidoglycan on the CWBD. A `domain-walking' approach, searching for other sequences with a domain of unknown function appended to the CWBD, was then used to identify a group of fungal muramidases that also contain homologous SH3-like cell-wall-binding modules, the catalytic domains of which define a new GH family. The properties of some representative members of this family are described as well as X-ray structures of the independent catalytic and SH3-like domains of the Kionochaeta sp., Thermothielavioides terrestris and Penicillium virgatum enzymes. This work confirms the power of the module-walking approach, extends the library of known GH families and adds a new noncatalytic module to the muramidase arsenal.
|
Aug 2023
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: Many secreted eukaryotic proteins are N-glycosylated with oligosaccharides composed of a high-mannose N-glycan core and, in the specific case of yeast cell-wall proteins, an extended α-1,6-mannan backbone carrying a number of α-1,2- and α-1,3-mannose substituents of varying lengths. α-Mannosidases from CAZy family GH92 release terminal mannose residues from these N-glycans, providing access for the α-endomannanases, which then degrade the α-mannan backbone. Most characterized GH92 α-mannosidases consist of a single catalytic domain, while a few have extra domains including putative carbohydrate-binding modules (CBMs). To date, neither the function nor the structure of a multi-domain GH92 α-mannosidase CBM has been characterized. Here, the biochemical investigation and crystal structure of the full-length five-domain GH92 α-1,2-mannosidase from Neobacillus novalis (NnGH92) with mannoimidazole bound in the active site and an additional mannoimidazole bound to the N-terminal CBM32 are reported. The structure of the catalytic domain is very similar to that reported for the GH92 α-mannosidase Bt3990 from Bacteroides thetaiotaomicron, with the substrate-binding site being highly conserved. The function of the CBM32s and other NnGH92 domains was investigated by their sequential deletion and suggested that whilst their binding to the catalytic domain was crucial for the overall structural integrity of the enzyme, they appear to have little impact on the binding affinity to the yeast α-mannan substrate. These new findings provide a better understanding of how to select and optimize other multi-domain bacterial GH92 α-mannosidases for the degradation of yeast α-mannan or mannose-rich glycans.
|
May 2023
|
|
I04-Macromolecular Crystallography
|
Olga V.
Moroz
,
Elena
Blagova
,
Andrey A.
Lebedev
,
Filomeno
Sanchez Rodriguez
,
Daniel J.
Rigden
,
Jeppe
Wegener Tams
,
Reinhard
Wilting
,
Jan Kjølhede
Vester
,
Emily
Longhi
,
Gustav
Hammerich Hansen
,
Kristian
Bertel Rømer Mørkeberg Krogh
,
Roland A.
Pache
,
Gideon
Davies
,
Keith S.
Wilson
Diamond Proposal Number(s):
[18598]
Abstract: β-Galactosidases catalyse the hydrolysis of lactose into galactose and glucose; as an alternative reaction, some β-galactosidases also catalyse the formation of galactooligosaccharides by transglycosylation. Both reactions have industrial importance: lactose hydrolysis is used to produce lactose-free milk, while galactooligosaccharides have been shown to act as prebiotics. For some multi-domain β-galactosidases, the hydrolysis/transglycosylation ratio can be modified by the truncation of carbohydrate-binding modules. Here, an analysis of BbgIII, a multidomain β-galactosidase from Bifidobacterium bifidum, is presented. The X-ray structure has been determined of an intact protein corresponding to a gene construct of eight domains. The use of evolutionary covariance-based predictions made sequence docking in low-resolution areas of the model spectacularly easy, confirming the relevance of this rapidly developing deep-learning-based technique for model building. The structure revealed two alternative orientations of the CBM32 carbohydrate-binding module relative to the GH2 catalytic domain in the six crystallographically independent chains. In one orientation the CBM32 domain covers the entrance to the active site of the enzyme, while in the other orientation the active site is open, suggesting a possible mechanism for switching between the two activities of the enzyme, namely lactose hydrolysis and transgalactosylation. The location of the carbohydrate-binding site of the CBM32 domain on the opposite site of the module to where it comes into contact with the catalytic GH2 domain is consistent with its involvement in adherence to host cells. The role of the CBM32 domain in switching between hydrolysis and transglycosylation modes offers protein-engineering opportunities for selective β-galactosidase modification for industrial purposes in the future.
|
Dec 2021
|
|
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Olga V.
Moroz
,
Elena
Blagova
,
Edward
Taylor
,
Johan
Turkenburg
,
Lars K.
Skov
,
Garry P.
Gippert
,
Kirk M.
Schnorr
,
Li
Ming
,
Liu
Ye
,
Mikkel
Klausen
,
Marianne T.
Cohn
,
Esben G. W.
Schmidt
,
Søren
Nymand-Grarup
,
Gideon J.
Davies
,
Keith S.
Wilson
Diamond Proposal Number(s):
[13587, 7864]
Open Access
Abstract: Muramidases/lysozymes hydrolyse the peptidoglycan component of the bacterial cell wall. They are found in many of the glycoside hydrolase (GH) families. Family GH25 contains muramidases/lysozymes, known as CH type lysozymes, as they were initially discovered in the Chalaropsis species of fungus. The characterized enzymes from GH25 exhibit both β-1,4-N-acetyl- and β-1,4-N,6-O-diacetylmuramidase activities, cleaving the β-1,4-glycosidic bond between N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) moieties in the carbohydrate backbone of bacterial peptidoglycan. Here, a set of fungal GH25 muramidases were identified from a sequence search, cloned and expressed and screened for their ability to digest bacterial peptidoglycan, to be used in a commercial application in chicken feed. The screen identified the enzyme from Acremonium alcalophilum JCM 736 as a suitable candidate for this purpose and its relevant biochemical and biophysical and properties are described. We report the crystal structure of the A. alcalophilum enzyme at atomic, 0.78 Å resolution, together with that of its homologue from Trichobolus zukalii at 1.4 Å, and compare these with the structures of homologues. GH25 enzymes offer a new solution in animal feed applications such as for processing bacterial debris in the animal gut.
|
Mar 2021
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[9948]
Open Access
Abstract: Background: Several examples have emerged of enzymes where slow conformational changes are of key importance for function and where low populated conformations in the resting enzyme resemble the conformations of intermediate states in the catalytic process. Previous work on the subtilisin protease, Savinase, from Bacillus lentus by NMR spectroscopy suggested that this enzyme undergoes slow conformational dynamics around the substrate binding site. However, the functional importance of such dynamics is unknown. Methods: Here we have probed the conformational heterogeneity in Savinase by following the temperature dependent chemical shift changes. In addition, we have measured changes in the local stability of the enzyme when the inhibitor phenylmethylsulfonyl fluoride is bound using hydrogen-deuterium exchange mass spectrometry (HDX-MS). Finally, we have used X-ray crystallography to compare electron densities collected at cryogenic and ambient temperatures and searched for possible low populated alternative conformations in the crystals. Results: The NMR temperature titration shows that Savinase is most flexible around the active site, but no distinct alternative states could be identified. The HDX shows that modification of Savinase with inhibitor has very little impact on the stability of hydrogen bonds and solvent accessibility of the backbone. The most pronounced structural heterogeneities detected in the diffraction data are limited to alternative side-chain rotamers and a short peptide segment that has an alternative main-chain conformation in the crystal at cryo conditions. Collectively, our data show that there is very little structural heterogeneity in the resting state of Savinase and hence that Savinase does not rely on conformational selection to drive the catalytic process.
|
Jun 2020
|
|