I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[18570]
Open Access
Abstract: Planar organic heterostructures are widely explored and employed in photovoltaic cells, light-emitting diodes, and bilayer field-effect transistors. An important role for device performance plays the energy level alignment at the inorganic–organic and organic–organic interfaces. In this work, incremental ultraviolet photoelectron spectroscopy measurements and real-time X-ray scattering experiments are used to thoroughly investigate the thickness-dependent electronic and structural properties of a perfluoropentacene (PFP)-on-[6]phenacene heterostructure. For both materials an incremental increase of the material work function (positive interface dipole) is found. For [6]phenacene, this can be assigned to a thickness-dependent change of molecular arrangement evident from a change of the unit cell volume and a consequential alteration of the ionization energy. In the case of PFP the interface dipole stems from charge transfer from the substrate into unoccupied molecular orbitals resulting in an electrostatic potential on the surface. The magnitude of this potential can be correlated with an increased gap state density resulting from templated structural defects mediated by the bottom layer.
|
Dec 2021
|
|
I07-Surface & interface diffraction
|
Abstract: Electronic states within the HOMO–LUMO gap of organic semiconductors play a key role in the energy level alignment of substrate–organic and organic–organic interfaces and therefore are a defining parameter for device functionality and efficiency. They are thought to result from structural defects influencing the specific environment of a molecule. Varying the substrate temperature for samples grown by molecular beam deposition, we are able to control their density. Using atomic force microscopy and X-ray scattering techniques, we can differentiate defects depending on their length scale and effective direction. Comparison of the respective defect density with the density of gap states, measured directly via ultra-low-background ultraviolet photoelectron spectroscopy, enables to correlate structural and electronic properties for different prototypical organic semiconductors. We investigate the impact of gap states on the energy level alignment and find a direct link between structural defects and the interface dipole.
|
Aug 2021
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[21899]
Open Access
Abstract: The fission of singlet excitons into triplet pairs in organic materials holds great technological promise, but the rational application of this phenomenon is hampered by a lack of understanding of its complex photophysics. Here, we use the controlled introduction of vacancies by means of spacer molecules in tetracene and pentacene thin films as a tuning parameter complementing experimental observables to identify the operating principles of different singlet fission pathways. Time-resolved spectroscopic measurements in combination with microscopic modelling enables us to demonstrate distinct scenarios, resulting from different singlet-to-triplet pair energy alignments. For pentacene, where fission is exothermic, coherent mixing between the photoexcited singlet and triplet-pair states is promoted by vibronic resonances, which drives the fission process with little sensitivity to the vacancy concentration. Such vibronic resonances do not occur for endothermic materials such as tetracene, for which we find fission to be fully incoherent; a process that is shown to slow down with increasing vacancy concentration.
|
Aug 2021
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[21899]
Abstract: Organic charge transfer complexes (CTCs) with near-infrared absorption received growing interest in the past years, but the details of their photophysics, especially in thin films, remain largely unknown. We combined experimental and computational methods to thoroughly investigate and compare CTCs formed by tetracene with 2,2′-(perfluoronaphthalene-2,6-diylidene)dimalononitrile and 2,3,5,6-tetrafluoro-7,7,8,8,-tetracyanoquinodimethane, respectively. Using ultrafast transient absorption spectroscopy, the photophysics of these small bandgap CTCs was revealed, which is dominated by a sub-picosecond relaxation of the excitons back to the ground state. In equimolar blends, tetracene singlet fission is suppressed while in blends with excess of tetracene reduced lifetimes of tetracene, singlet and triplet excitons were found.
|
Mar 2021
|
|
I09-Surface and Interface Structural Analysis
|
Jens
Niederhausen
,
Antoni
Franco-Cañellas
,
Simon
Erker
,
Thorsten
Schultz
,
Katharina
Broch
,
Alexander
Hinderhofer
,
Steffen
Duhm
,
Pardeep K.
Thakur
,
David A.
Duncan
,
Alexander
Gerlach
,
Tien-Lin
Lee
,
Oliver T.
Hofmann
,
Frank
Schreiber
,
Norbert
Koch
Diamond Proposal Number(s):
[11415, 13740, 19033]
Open Access
Abstract: The vertical adsorption distances of the planar conjugated organic molecule 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) on hydroxylated ZnO(0001), determined with the x-ray standing wave technique (XSW), are at variance with adsorption geometries simulated with density functional theory for surface-structure models that consider terminating OH, whereas good agreement is found for PTCDI in direct contact with the topmost Zn layer. The consequential assignment of OH to subsurface sites is supported by additional, independent XSW and energy scanned photoelectron diffraction data and calls for a reconsideration of the prevalent surface models with important implications for the understanding of ZnO(0001) surfaces.
|
Feb 2020
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[12797]
Abstract: We experimentally quantify the molecular bending of a partially fluorinated pentacene (PEN) compound, namely 2,3,9,10-tetrafluoropentacene (F4PEN), adsorbed on Cu(111). By means of the x-ray standing wave (XSW) technique, we directly measure the adsorption distance of three inequivalent carbon sites, the fluorine atoms as well as the total and backbone carbon average adsorption distances. The precise positioning of different sites within the carbon core allows us to resolve two adsorption behaviors, namely a PEN-like strong coupling between the backbone and the substrate, and a repulsive interaction involving the fluorinated short molecular edges, which are 0.91±0.09Å above the central benzene ring. This finding is further supported by additional electronic and in-plane-structure measurements, thus showing that the selective fluorination of a PEN molecule has only a local conformational effect and it is not sufficient to modify its interface properties. Yet, in the multilayer regime, the electronic and growth properties of the film differ completely from those of PEN and its perfluorinated derivative.
|
Apr 2018
|
|
I09-Surface and Interface Structural Analysis
|
Qi
Wang
,
Antoni
Franco-Cañellas
,
Penghui
Ji
,
Christoph
Buerker
,
Rong-Bin
Wang
,
Katharina
Broch
,
Pardeep Kumar
Thakur
,
Tien-Lin
Lee
,
Haiming
Zhang
,
Alexander
Gerlach
,
Lifeng
Chi
,
Steffen
Duhm
,
Frank
Schreiber
Diamond Proposal Number(s):
[10443]
Abstract: Organic heterostructures are a central part of a manifold of (opto)electronic devices and serve a variety of functions. Particularly, molecular monolayers on metal electrodes are of paramount importance for device performance as they allow tuning energy levels in a versatile way. However, this can be hampered by molecular exchange, i.e., by interlayer diffusion of molecules toward the metal surface. We show that the organic–metal interaction strength is the decisive factor for the arrangement in bilayers, which is the most fundamental version of organic–organic heterostructures. The subtle differences in molecular structure of 6,13-pentacenequinone (P2O) and 5,7,12,14-pentacenetetrone (P4O) lead to antithetic adsorption behavior on Ag(111): physisorption of P2O but chemisorption of P4O. This allows providing general indicators for organic–metal coupling based on shifts in photoelectron spectroscopy data and to show that the coupling strength of copper-phthalocyanine (CuPc) with Ag(111) is in between that of P2O and P4O. We find that, indeed, CuPc forms a bilayer when deposited on a monolayer P4O/Ag(111) but molecular exchange takes place with P2O, as shown by a combination of scanning tunneling microscopy and X-ray standing wave experiments.
|
Apr 2018
|
|
I07-Surface & interface diffraction
|
Hannah L.
Stern
,
Alexandre
Cheminal
,
Shane R.
Yost
,
Katharina
Broch
,
Sam L.
Bayliss
,
Kai
Chen
,
Maxim
Tabachnyk
,
Karl
Thorley
,
Neil
Greenham
,
Justin M.
Hodgkiss
,
John
Anthony
,
Martin
Head-Gordon
,
Andrew J.
Musser
,
Akshay
Rao
,
Richard H.
Friend
Diamond Proposal Number(s):
[11220]
Abstract: Singlet exciton fission (SF), the conversion of one spin-singlet exciton (S1) into two spin-triplet excitons (T1), could provide a means to overcome the Shockley–Queisser limit in photovoltaics. SF as measured by the decay of S1 has been shown to occur efficiently and independently of temperature, even when the energy of S1 is as much as 200 meV less than that of 2T1. Here we study films of triisopropylsilyltetracene using transient optical spectroscopy and show that the triplet pair state (TT), which has been proposed to mediate singlet fission, forms on ultrafast timescales (in 300 fs) and that its formation is mediated by the strong coupling of electronic and vibrational degrees of freedom. This is followed by a slower loss of singlet character as the excitation evolves to become only TT. We observe the TT to be thermally dissociated on 10–100 ns timescales to form free triplets. This provides a model for ‘temperature-independent’ efficient TT formation and thermally activated TT separation.
|
Sep 2017
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[12797, 9523]
Abstract: We present a comprehensive study of the complex interface between perylene-3,4,9,10-tetracarboxylic diimide (PTCDI) and the (111) surfaces of the three coinage metals. The specific structural, electronic, and chemical properties of the interface rendered by the different substrate reactivities are monitored with low-energy electron diffraction (LEED), x-ray standing waves (XSW), and ultraviolet and x-ray photelectron spectroscopy (UPS and XPS). In particular, the balance between molecule-substrate and molecule-molecule interactions is considered when interpreting the core-level spectra of the different interfaces. By presenting additional adsorption distances of the unsubstituted perylene, we show that the molecular functionalization via end groups with acceptor character facilitates the charge transfer from the substrate but it is not directly responsible for the associated short adsorption distances, demonstrating that this frequently assumed correlation is not necessarily correct.
|
Jun 2017
|
|
I07-Surface & interface diffraction
|
Maxim
Tabachnyk
,
Arfa H.
Karani
,
Katharina
Broch
,
Luis M.
Pazos-Outón
,
James
Xiao
,
Tom C.
Jellicoe
,
Jiri
Novak
,
David
Harkin
,
Andrew J.
Pearson
,
Akshay
Rao
,
Neil C.
Greenham
,
Marcus L.
Böhm
,
Richard H.
Friend
Open Access
Abstract: Carrier multiplication using singlet exciton fission (SF) to generate a pair of spin-triplet excitons from a single optical excitation has been highlighted as a promising approach to boost the photocurrent in photovoltaics (PVs) thereby allowing PV operation beyond the Shockley-Queisser limit. The applicability of many efficient fission materials, however, is limited due to their poor solubility. For instance, while acene-based organics such as pentacene (Pc) show high SF yields (up to200%), the plain acene backbone renders the organic molecule insoluble in common organic solvents. Previous approaches adding solubilizing side groups such as bis(tri-iso-propylsilylethynyl) to the Pc core resulted in low vertical carrier mobilities due to reduction of the transfer integrals via steric hindrance, which prevented high efficiencies in PVs. Here we show how to achieve good solubility while retaining the advantages of molecular Pc by using a soluble precursor route. The precursor fully converts into molecular Pc through thermal removal of the solubilizing side groups upon annealing above 150 °C in the solid state. The annealed precursor shows small differences in the crystallinity compared to evaporated thin films of Pc, indicating that the Pc adopts the bulk rather than surface polytype. Furthermore, we identify identical SF properties such as sub-100 fs fission time and equally long triplet lifetimes in both samples.
|
Nov 2016
|
|