B07-B1-Versatile Soft X-ray beamline: High Throughput ES1
B18-Core EXAFS
E02-JEM ARM 300CF
|
Longxiang
Liu
,
Liqun
Kang
,
Jianrui
Feng
,
David G.
Hopkinson
,
Christopher S.
Allen
,
Yeshu
Tan
,
Hao
Gu
,
Iuliia
Mikulska
,
Veronica
Celorrio
,
Diego
Gianolio
,
Tianlei
Wang
,
Liquan
Zhang
,
Kaiqi
Li
,
Jichao
Zhang
,
Jiexin
Zhu
,
Georg
Held
,
Pilar
Ferrer
,
David
Grinter
,
June
Callison
,
Martin
Wilding
,
Sining
Chen
,
Ivan
Parkin
,
Guanjie
He
Diamond Proposal Number(s):
[30614, 32058, 32035, 32117, 33466, 29271]
Open Access
Abstract: Electrochemical hydrogen peroxide (H2O2) production (EHPP) via a two-electron oxygen reduction reaction (2e- ORR) provides a promising alternative to replace the energy-intensive anthraquinone process. M-N-C electrocatalysts, which consist of atomically dispersed transition metals and nitrogen-doped carbon, have demonstrated considerable EHPP efficiency. However, their full potential, particularly regarding the correlation between structural configurations and performances in neutral media, remains underexplored. Herein, a series of ultralow metal-loading M-N-C electrocatalysts are synthesized and investigated for the EHPP process in the neutral electrolyte. CoNCB material with the asymmetric Co-C/N/O configuration exhibits the highest EHPP activity and selectivity among various as-prepared M-N-C electrocatalyst, with an outstanding mass activity (6.1 × 105 A gCo−1 at 0.5 V vs. RHE), and a high practical H2O2 production rate (4.72 mol gcatalyst−1 h−1 cm−2). Compared with the popularly recognized square-planar symmetric Co-N4 configuration, the superiority of asymmetric Co-C/N/O configurations is elucidated by X-ray absorption fine structure spectroscopy analysis and computational studies.
|
May 2024
|
|
B07-B1-Versatile Soft X-ray beamline: High Throughput ES1
B18-Core EXAFS
E01-JEM ARM 200CF
E02-JEM ARM 300CF
|
Fangjia
Zhao
,
Jianwei
Li
,
Arunabhiram
Chutia
,
Longxiang
Liu
,
Liqun
Kang
,
Feili
Lai
,
Haobo
Dong
,
Xuan
Gao
,
Yeshu
Tan
,
Tianxi
Liu
,
Ivan P.
Parkin
,
Guanjie
He
Diamond Proposal Number(s):
[32905, 29340, 32058]
Open Access
Abstract: The design and synthesis of manganese oxide-based materials with high-rate performance and long cycle life is a major challenge for aqueous zinc-ion batteries (AZIBs). This research reports the presence of a synergistic collaboration between vacancies, lattice water and nickel ions on enhancing the hydrated protons hopping via the Grotthuss mechanism for high-performance zinc ion batteries. The Grotthuss mechanism allows for the efficient transfer of a proton charge without the actual movement of the molecule over long distances, resulting in high ionic conductivity. NiMn3O7·3H2O achieves a capacity of 318 mA h g−1 under 200 mA g−1 and 121 mA h g−1 under 5 A g−1 with a retention of 91% after 4000 cycles. The relationship between the remarkable performance and Grotthuss topochemistry is investigated using techniques including synchrotron X-ray absorption spectroscopy and density functional theory. Protons prefer to bond with O2− ions on the Mn–O layer, and proton transfer is favoured in the presence of vacancies. The continuous hopping of protons within the host material induces periodic, temporary local structural changes in the lattice. This dynamic behaviour alters the energy barriers for ions intercalation and deintercalation. Nickel ions facilitate the ongoing mobility of hydrated protons via Grotthuss hopping by preserving the system's electrical neutrality, which counterbalances the dynamic changes caused by proton migration. This study provides insight into the Grotthuss conduction mechanism for the development of high-performance cathode materials in AZIBs.
|
Jan 2024
|
|
E02-JEM ARM 300CF
|
Jichao
Zhang
,
Jiexin
Zhu
,
Liqun
Kang
,
Qing
Zhang
,
Longxiang
Liu
,
Fei
Guo
,
Kaiqi
Li
,
Jianrui
Feng
,
Lixue
Xia
,
Lei
Lv
,
Wei
Zong
,
Paul R.
Shearing
,
Dan J. L.
Brett
,
Ivan P.
Parkin
,
Xuedan
Song
,
Liqiang
Mai
,
Guanjie
He
Diamond Proposal Number(s):
[32058, 33118]
Open Access
Abstract: Electrochemical urea splitting provides a sustainable and environmentally benign route for facilitating energy conversion. Nonetheless, the sustained efficiency of urea splitting is impeded by a scarcity of active sites during extended operational periods. Herein, an atomic heterostructure engineering strategy is proposed to promote the generation of active species via synthesizing unique Ru–O4 coordinated single atom catalysts anchored on Ni hydroxide (Ru1–Ni(OH)2), with ultralow Ru loading mass of 40.6 μg cm−2 on the nickel foam for commercial feasibility. Leveraging in situ spectroscopic characterizations, the structure-performance relationship in low and high urea concentrations was investigated and exhibited extensive universality. The boosted generation of dynamic Ni3+ active sites ensures outstanding activity and prominent long-term durability tests in various practical scenarios, including 100 h Zn–urea–air battery operation, 100 h alkaline urine electrolysis, and over 400 h stable hydrogen production in membrane electrode assembly (MEA) system under industrial-level current density.
|
Nov 2023
|
|
|
Open Access
Abstract: Quantifying the crystallographic phases present at a surface is an important challenge in fields such as functional materials and surface science. X-ray photoelectron spectroscopy (XPS) is routinely employed in surface characterization to identify and quantify chemical species through core line analysis. Valence band (VB) spectra contain characteristic but complex features that provide information on the electronic density of states (DoS) and thus can be understood theoretically using density functional theory (DFT). Here, we present a method of fitting experimental photoemission spectra with DFT models for quantitative analysis of heterogeneous systems, specifically mapping the anatase to rutile ratio across the surface of mixed-phase TiO2 thin films. The results were correlated with mapped photocatalytic activity measured using a resazurin-based smart ink. This method allows large-scale functional and surface composition mapping in heterogeneous systems and demonstrates the unique insights gained from DFT-simulated spectra on the electronic structure origins of complex VB spectral features.
|
Aug 2023
|
|
B07-B1-Versatile Soft X-ray beamline: High Throughput ES1
E02-JEM ARM 300CF
|
Longxiang
Liu
,
Liqun
Kang
,
Arunabhiram
Chutia
,
Jianrui
Feng
,
Martyna
Michalska
,
Pilar
Ferrer
,
David
Grinter
,
Georg
Held
,
Yeshu
Tan
,
Fangjia
Zhao
,
Fei
Guo
,
David
Hopkinson
,
Christopher
Allen
,
Yanbei
Hou
,
Junwen
Gu
,
Ioannis
Papakonstantinou
,
Paul
Shearing
,
Dan
Brett
,
Ivan P.
Parkin
,
Guanjie
He
Diamond Proposal Number(s):
[29340, 32501, 30614, 29809, 32058]
Open Access
Abstract: The electrochemical synthesis of hydrogen peroxide (H2O2) via a two-electron (2e-) oxygen reduction reaction (ORR) process provides a promising alternative to replace the energy-intensive anthraquinone process. However, the development of efficient electrocatalysts is still facing lots of challenges like insufficient understanding of active sites. Herein, we develop a facile template-protected strategy to synthesize a highly active quinone-rich porous carbon catalyst (PCC) for H2O2 electrochemical production. The optimized PCC900 exhibits unprecedented activity and selectivity, of which the onset potential reaches 0.83 V vs. reversible hydrogen electrode in 0.1 M KOH and the H2O2 selectivity is over 95 % in a wide potential range. Comprehensive synchrotron-based near-edge X-ray absorption fine structure (NEXAFS) spectroscopy combined with electrocatalytic characterizations reveals the positive correlation between quinone content and 2e- ORR performance. The effectiveness of chair-form quinone groups as the most efficient active sites is highlighted by the molecule-mimic strategy and theoretical analysis.
|
Mar 2023
|
|
E01-JEM ARM 200CF
E02-JEM ARM 300CF
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Runjia
Lin
,
Liqun
Kang
,
Karolina
Lisowska
,
Weiying
He
,
Siyu
Zhao
,
Shusaku
Hayama
,
Dan
Brett
,
Graham
Hutchings
,
Furio
Corà
,
Ivan
Parkin
,
Guanjie
He
Diamond Proposal Number(s):
[29254, 29207]
Open Access
Abstract: Electrocatalytic oxygen reduction reaction (ORR) has been intensively studied for efficient and environmentally benign energy conversion processes. However, insufficient understanding of ORR 2e--pathway mechanism at the atomic level inhibits rational design of electrocatalysts with both high activity and selectivity, causing concerns including catalyst degradation due to Fenton reaction or poor efficiency of H2O2 electrosynthesis. Herein we show that the generally accepted ORR electrocatalyst design based on a Sabatier volcano plot argument optimises activity but is unable to account for the 2e--pathway selectivity; an extended “dynamic active site saturation” model that examines in addition the hydrogenation kinetics linked to the OOH* adsorption energy enables us to resolve the activity-selectivity compromise. Through electrochemical and operando spectroscopic studies on the ORR process governed by a series of Co-N x /carbon nanotube hybrids, a construction-driven approach that aims to create the maximum number of 2e- ORR sites by directing the secondary ORR electron transfer step towards the 2e- intermediate is proven to be attainable by manipulating O2 hydrogenation kinetics. Control experiments reveal the O2 hydrogenation chemistry is related to a catalyst reconstruction with lower symmetry around the Co active centre induced by the application of a cathodic potential. The optimised catalyst exhibits a ~100% H2O2 selectivity and an outstanding activity with an ORR potential of 0.82 V versus the reversible hydrogen electrode to reach the ring current density of 1 mA cm-2 by using rotating ring-disk electrode measurement, which is the best-performing 2e- ORR electrocatalyst reported to date, and approaches the thermodynamic limit.
|
Mar 2023
|
|
E02-JEM ARM 300CF
|
Haobo
Dong
,
Ruirui
Liu
,
Xueying
Hu
,
Fangjia
Zhao
,
Liqun
Kang
,
Longxiang
Liu
,
Jianwei
Li
,
Yeshu
Tan
,
Yongquan
Zhou
,
Dan J. L.
Brett
,
Guanjie
He
,
Ivan
Parkin
Diamond Proposal Number(s):
[30614, 29809]
Open Access
Abstract: A stable cathode–electrolyte interface (CEI) is crucial for aqueous zinc-ion batteries (AZIBs), but it is less investigated. Commercial binder poly(vinylidene fluoride) (PVDF) is widely used without scrutinizing its suitability and cathode-electrolyte interface (CEI) in AZIBs. A water-soluble binder is developed that facilitated the in situ formation of a CEI protecting layer tuning the interfacial morphology. By combining a polysaccharide sodium alginate (SA) with a hydrophobic polytetrafluoroethylene (PTFE), the surface morphology, and charge storage kinetics can be confined from diffusion-dominated to capacitance-controlled processes. The underpinning mechanism investigates experimentally in both kinetic and thermodynamic perspectives demonstrate that the COO− from SA acts as an anionic polyelectrolyte facilitating the adsorption of Zn2+; meanwhile fluoride atoms on PTFE backbone provide hydrophobicity to break desolvation penalty. The hybrid binder is beneficial in providing a higher areal flux of Zn2+ at the CEI, where the Zn-Birnessite MnO2 battery with the hybrid binder exhibits an average specific capacity 45.6% higher than that with conventional PVDF binders; moreover, a reduced interface activation energy attained fosters a superior rate capability and a capacity retention of 99.1% in 1000 cycles. The hybrid binder also reduces the cost compared to the PVDF/NMP, which is a universal strategy to modify interface morphology.
|
Dec 2022
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[30614, 29809, 32058]
Open Access
Abstract: Platinum (Pt) is regarded as a promising electrocatalyst for hydrogen evolution reaction (HER). However, its application in an alkaline medium is limited by the activation energy of water dissociation, diffusion of H+, and desorption of H*. Moreover, the formation of effective structures with a low Pt usage amount is still a challenge. Herein, guided by the simulation discovery that the edge effect can boost local electric field (LEF) of the electrocatalysts for faster proton diffusion, platinum nanocrystals on the edge of transition metal phosphide nanosheets are fabricated. The unique heterostructure with ultralow Pt amount delivered an outstanding HER performance in an alkaline medium with a small overpotential of 44.5 mV and excellent stability for 80 h at the current density of −10 mA cm−2. The mass activity of as-prepared electrocatalyst is 2.77 A mg−1Pt, which is 15 times higher than that of commercial Pt/C electrocatalysts (0.18 A mg−1Pt). The density function theory calculation revealed the efficient water dissociation, fast adsorption, and desorption of protons with hybrid structure. The study provides an innovative strategy to design unique nanostructures for boosting HER performances via achieving both synergistic effects from hybrid components and enhanced LEF from the structural edge effect.
|
Nov 2022
|
|
E01-JEM ARM 200CF
E02-JEM ARM 300CF
|
Jianwei
Li
,
Ningjing
Luo
,
Liqun
Kang
,
Fangjia
Zhao
,
Yiding
Jiao
,
Thomas J.
Macdonald
,
Min
Wang
,
Ivan P.
Parkin
,
Paul R.
Shearing
,
Dan J. L.
Brett
,
Guoliang
Chai
,
Guanjie
He
Diamond Proposal Number(s):
[22553, 22604, 30614]
Open Access
Abstract: Layered manganese oxides adopting pre-accommodated cations have drawn tremendous interest for the application as cathodes in aqueous zinc-ion batteries (AZIBs) owing to their open 2D channels for fast ion-diffusion and mild phase transition upon topochemical (de)intercalation processes. However, it is inevitable to see these “pillar” cations leaching from the hosts owing to the loose interaction with negatively charged Helmholtz planes within the hosts and shearing/bulking effects in 2D structures upon guest species (de)intercalation, which implies a limited modulation to prevent them from rapid performance decay. Herein, a new class of layered manganese oxides, Mg0.9Mn3O7·2.7H2O, is proposed for the first time, aims to achieve a robust cathode for high-performance AZIBs. The cathode can deliver a high capacity of 312 mAh g−1 at 0.2 A g−1 and exceptional cycling stability with 92% capacity retention after 5 000 cycles at 5 A g−1. The comprehensive characterizations elucidate its peculiar motif of pined Mg-□Mn-Mg dumbbell configuration along with interstratified hydrogen bond responsible for less Mn migration/dissolution and quasi-zero-strain characters. The revealed new structure-function insights can open up an avenue toward the rational design of superstructural cathodes for reversible AZIBs.
|
Nov 2022
|
|
B07-B1-Versatile Soft X-ray beamline: High Throughput ES1
B18-Core EXAFS
|
Jichao
Zhang
,
Xuedan
Song
,
Liqun
Kang
,
Jiexin
Zhu
,
Longxiang
Liu
,
Qing
Zhang
,
Dan J. I.
Brett
,
Paul R.
Shearing
,
Liqiang
Mai
,
Ivan P.
Parkin
,
Guanjie
He
Diamond Proposal Number(s):
[29340, 29271]
Open Access
Abstract: Layered hydroxides have shown superior catalytic activity for the electrocatalytic organic compound oxidation reaction. However, metal leaching can lead to uncontrollable structural phase transformation. Here, we report a Cr-Ni(OH)2 electrocatalyst as a model of a pre-catalyst for the identification of the structure-performance relationship. The optimized electrocatalyst delivered superb performances, i.e., a low potential of 1.38 V (versus reversible hydrogen electrode [RHE]) to reach 100 mA cm−2 and stable activity over 200 h at 10 mA cm−2. In situ analyses and theoretical calculations demonstrate that well-tuned electronic structures and the superhydrophilic-superaerophobic surface can enable rapid urea oxidation reaction (UOR) kinetics, which reduces the specific adsorption OH− and significantly depresses Cr dopants leaching, and this helps to maintain high UOR performance. Furthermore, the crucial role of mass transfer improvement to alleviate the structural decay under high potentials is disclosed.
|
Oct 2022
|
|