B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Lydia
Briggs
,
Ruth
Newby
,
Xue
Han
,
Christopher
Morris
,
Mathew
Savage
,
Cristina
Perez
,
Timothy L.
Easun
,
Mark
Frogley
,
Gianfelice
Cinque
,
Claire A.
Murray
,
Chiu C.
Tang
,
Sihai
Yang
,
Junliang
Sun
,
Martin
Schroeder
Diamond Proposal Number(s):
[22137, 22138]
Open Access
Abstract: We report the adsorption of C2H2, CO2 and SO2 in a new, ultra-stable Cr(III)-based MOF, MFM-300(Cr), {[Cr2(OH)2(L)], H4L = biphenyl-3,3',5,5'-tetracarboxylic acid}. MFM-300(Cr) shows uptakes of 7.37, 7.73 and 8.59 mmol g-1 for CO2, C2H2 and SO2, respectively, at 273 K, 1.0 bar, and shows a higher selectivity for SO2/CO2 compared with the Al(III) analogue MFM-300(Al) (selectivity of 79 vs. 45). In order to monitor the effects of changing metal centre on gas uptake and to integrate the properties of the homometallic analogues, the mixed metal MFM-300(Al0.67Cr0.33), [Al1.34Cr0.66(OH)2L] has been synthesised. In situ synchrotron micro-FTIR spectroscopy has identified distinct CO2 binding environments on Al-O(H)-Al, Cr-O(H)-Cr and Al-O(H)-Cr bridges in MFM-300(Al0.67Cr0.33), and we have determined the binding domains for these gases by in situ synchrotron X-ray diffraction in both MFM-300(Cr) and MFM-300(Al0.67Cr0.33). The capability of these materials for gas separation has been confirmed by dynamic breakthrough experiments. The incorporation of Al(III) and Cr(III) within the same framework allows tuning of the host-guest and guest-guest interactions within these functional porous materials.
|
Feb 2021
|
|
I19-Small Molecule Single Crystal Diffraction
|
William J. F.
Trenholme
,
Daniil I.
Kolokolov
,
Michelle
Bound
,
Stephen P.
Argent
,
Jamie A.
Gould
,
Jiangnan
Li
,
Sarah A.
Barnett
,
Alexander J.
Blake
,
Alexander G.
Stepanov
,
Elena
Besley
,
Timothy L.
Easun
,
Sihai
Yang
,
Martin
Schroeder
Abstract: The desolvated (3,24)-connected metal–organic framework (MOF) material, MFM-160a, [Cu3(L)(H2O)3] [H6L = 1,3,5-triazine-2,4,6-tris(aminophenyl-4-isophthalic acid)], exhibits excellent high-pressure uptake of CO2 (110 wt% at 20 bar, 298 K) and highly selective separation of C2 hydrocarbons from CH4 at 1 bar pressure. Henry’s law selectivities of 79:1 for C2H2:CH4 and 70:1 for C2H4:CH4 at 298 K are observed, consistent with ideal adsorption solution theory (IAST) predictions. Significantly, MFM-160a shows a selectivity of 16:1 for C2H2:CO2. Solid-state 2H NMR spectroscopic studies on partially deuterated MFM-160-d12 confirm an ultra-low barrier (∼2 kJ mol–1) to rotation of the phenyl group in the activated MOF and a rotation rate 5 orders of magnitude slower than usually observed for solid-state materials (1.4 × 106 Hz cf. 1011–1013 Hz). Upon introduction of CO2 or C2H2 into desolvated MFM-160a, this rate of rotation was found to increase with increasing gas pressure, a phenomenon attributed to the weakening of an intramolecular hydrogen bond in the triazine-containing linker upon gas binding. DFT calculations of binding energies and interactions of CO2 and C2H2 around the triazine core are entirely consistent with the 2H NMR spectroscopic observations.
|
Feb 2021
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[16450]
Open Access
Abstract: The formation processes of metal–organic frameworks are becoming more widely researched using in situ techniques, although there remains a scarcity of NMR studies in this field. In this work, the synthesis of framework MFM-500(Ni) has been investigated using an in situ NMR strategy that provides information on the time-evolution of the reaction and crystallization process. In our in situ NMR study of MFM-500(Ni) formation, liquid-phase 1H NMR data recorded as a function of time at fixed temperatures (between 60 and 100 °C) afford qualitative information on the solution-phase processes and quantitative information on the kinetics of crystallization, allowing the activation energies for nucleation (61.4 ± 9.7 kJ mol−1) and growth (72.9 ± 8.6 kJ mol−1) to be determined. Ex situ small-angle X-ray scattering studies (at 80 °C) provide complementary nanoscale information on the rapid self-assembly prior to MOF crystallization and in situ powder X-ray diffraction confirms that the only crystalline phase present during the reaction (at 90 °C) is phase-pure MFM-500(Ni). This work demonstrates that in situ NMR experiments can shed new light on MOF synthesis, opening up the technique to provide better understanding of how MOFs are formed.
|
Nov 2020
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Gemma L.
Smith
,
Jennifer E.
Eyley
,
Xue
Han
,
Xinran
Zhang
,
Jiangnan
Li
,
Nicholas M.
Jacques
,
Harry G. W.
Godfrey
,
Stephen P.
Argent
,
Laura J.
Mccormick Mcpherson
,
Simon J.
Teat
,
Yongqiang
Cheng
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Sarah
Day
,
Chiu C.
Tang
,
Timothy L.
Easun
,
Svemir
Rudic
,
Anibal J.
Ramirez-Cuesta
,
Sihai
Yang
,
Martin
Schroeder
Abstract: Emissions of SO2 from flue gas and marine transport have detrimental impacts on the environment and human health, but SO2 is also an important industrial feedstock if it can be recovered, stored and transported efficiently. Here we report the exceptional adsorption and separation of SO2 in a porous material, [Cu2(L)] (H4L = 4′,4‴-(pyridine-3,5-diyl)bis([1,1′-biphenyl]-3,5-dicarboxylic acid)), MFM-170. MFM-170 exhibits fully reversible SO2 uptake of 17.5 mmol g−1 at 298 K and 1.0 bar, and the SO2 binding domains for trapped molecules within MFM-170 have been determined. We report the reversible coordination of SO2 to open Cu(ii) sites, which contributes to excellent adsorption thermodynamics and selectivities for SO2 binding and facile regeneration of MFM-170 after desorption. MFM-170 is stable to water, acid and base and shows great promise for the dynamic separation of SO2 from simulated flue gas mixtures, as confirmed by breakthrough experiments.
|
Oct 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Jack
Humby
,
Oguarabau
Benson
,
Gemma L.
Smith
,
Stephen P.
Argent
,
Ivan
Da Silva
,
Yongqiang
Cheng
,
Svemir
Rudic
,
Pascal
Manuel
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Lucy K.
Saunders
,
Inigo
Vitorica-Yrezabal
,
George F. S.
Whitehead
,
Timothy L.
Easun
,
William
Lewis
,
Alexander J.
Blake
,
Anibal J.
Ramirez-Cuesta
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[13666]
Open Access
Abstract: In order to develop new porous materials for applications in gas separations such as natural gas upgrading, landfill gas processing and acetylene purification it is vital to gain understanding of host-substrate interactions at a molecular level. Herein we report a series of six isoreticular metal-organic frameworks (MOFs) for selective gas adsorption. These materials do not incorporate open metal sites and thus provide an excellent platform to investigate the effect of the incorporation of ligand functionality via amide and alkyne groups on substrate binding. By reducing the linker length of our previously reported MFM-136, we report much improved CO2/CH4 (50:50) and CO2/N¬2 (15:85) selectivity values of 20.2 and 65.4, respectively (1 bar and 273 K), in the new amide-decorated MOF, MFM-126. The CO2 separation performance of MFM-126 has been confirmed by dynamic breakthrough experiments. In situ inelastic neutron scattering and synchrotron FT-IR microspectroscopy were employed to elucidate dynamic interactions of adsorbed CO2 molecules within MFM-126. Upon changing the functionality to an alkyne group in MFM-127, the CO2 uptake decreases but the C2H2 uptake increases by 68%, leading to excellent C2H2/CO2 and C2H2/CH4 selectivities of 3.7 and 21.2, respectively. Neutron powder diffraction enabled the direct observation of the preferred binding domains in MFM-126 and MFM-127, and, to the best of our knowledge, we report the first example of acetylene binding to an alkyne moiety in a porous material, with over 50% of the acetylene observed within MFM-127 displaying interactions (<4 Å) with the alkyne functionality of the framework.
|
Oct 2018
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Martin
Schroder
,
Harry
Godfrey
,
Ivan
Da Silva
,
Lydia
Briggs
,
Joe
Carter
,
Christopher
Morris
,
Mathew
Savage
,
Timothy
Easun
,
Pascal
Manuel
,
Claire
Murray
,
Chiu
Tang
,
Mark
Frogley
,
Gianfelice
Cinque
,
Sihai
Yang
Diamond Proposal Number(s):
[15972, 13666]
Open Access
Abstract: MFM‐300(Al) shows reversible uptake of NH3 (15.7 mmol g‐1 at 273 K and 1.0 bar) over 50 cycles with an exceptional packing density of 0.62 g cm‐3 at 293 K. In situ neutron powder diffraction and synchrotron FTIR micro‐spectroscopy on ND3@MFM‐300(Al) confirms reversible H/D site exchange between the adsorbent and adsorbate, representing a new type of adsorption interaction.
|
Aug 2018
|
|
I19-Small Molecule Single Crystal Diffraction
|
Florian
Moreau
,
Daniil I.
Kolokolov
,
Alexander G.
Stepanov
,
Timothy L.
Easun
,
Anne
Dailly
,
William
Lewis
,
Alexander J.
Blake
,
Harriott
Nowell
,
Matthew J.
Lennox
,
Elena
Besley
,
Sihai
Yang
,
Martin
Schröder
Diamond Proposal Number(s):
[12517]
Abstract: Modulation and precise control of porosity of metal-organic frameworks (MOFs) is of critical importance to their materials function. Here we report modulation of porosity for a series of isoreticular octacarboxylate MOFs, denoted MFM-180 to MFM-185, via a strategy of selective elongation of metal-organic cages. Owing to the high ligand connectivity, these MOFs do not show interpenetration, and are robust structures that have permanent porosity. Interestingly, activated MFM-185a shows a high Brunauer–Emmett–Teller (BET) surface area of 4,734 m2 g−1 for an octacarboxylate MOF. These MOFs show remarkable CH4 and CO2 adsorption properties, notably with simultaneously high gravimetric and volumetric deliverable CH4 capacities of 0.24 g g−1 and 163 vol/vol (298 K, 5–65 bar) recorded for MFM-185a due to selective elongation of tubular cages. The dynamics of molecular rotors in deuterated MFM-180a-d16 and MFM-181a-d16 were investigated by variable-temperature 2H solid-state NMR spectroscopy to reveal the reorientation mechanisms within these materials. Analysis of the flipping modes of the mobile phenyl groups, their rotational rates, and transition temperatures paves the way to controlling and understanding the role of molecular rotors through design of organic linkers within porous MOF materials.
|
Mar 2017
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Zhenzhong
Lu
,
Harry G. W.
Godfrey
,
Ivan
Da Silva
,
Yongqiang
Cheng
,
Mathew
Savage
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Simon J.
Teat
,
Kevin J.
Gagnon
,
Mark D.
Frogley
,
Pascal
Manuel
,
Svemir
Rudic
,
Anibal J.
Ramirez-Cuesta
,
Timothy L.
Easun
,
Sihai
Yang
,
Martin
Schröder
Diamond Proposal Number(s):
[13666]
Open Access
Abstract: Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host–guest systems. Here we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(VIII) {[VIII2(OH)2(L)], LH4=biphenyl-3,3′,5,5′-tetracarboxylic acid} can be oxidized to isostructural MFM-300(VIV), [VIV2O2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(VIII) shows the second highest CO2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g−1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO2, which binds in an end-on manner, =1.863(1) Å. In contrast, CO2-loaded MFM-300(VIV) shows CO2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique ···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. The macroscopic packing of CO2 in the pores is directly influenced by these primary binding sites.
|
Jan 2017
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
I19-Small Molecule Single Crystal Diffraction
|
Mathew
Savage
,
Yongqiang
Cheng
,
Timothy L.
Easun
,
Jennifer E.
Eyley
,
Stephen P.
Argent
,
Mark
Warren
,
William
Lewis
,
Claire
Murray
,
Chiu C.
Tang
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Junliang
Sun
,
Svemir
Rudić
,
Richard T.
Murden
,
Michael J.
Benham
,
Andrew N.
Fitch
,
Alexander J.
Blake
,
Anibal J.
Ramirez-Cuesta
,
Sihai
Yang
,
Martin
Schröder
Diamond Proposal Number(s):
[9444, 5839, 12516]
Open Access
Abstract: Selective adsorption of SO2 is realized in a porous metal–organic framework material, and in-depth structural and spectroscopic investigations using X-rays, infrared, and neutrons define the underlying interactions that cause SO2 to bind more strongly than CO2 and N2.
|
Aug 2016
|
|
I11-High Resolution Powder Diffraction
I19-Small Molecule Single Crystal Diffraction
|
Simona
Pili
,
Stephen
Argent
,
Christopher
Morris
,
Peter
Rought
,
Victoria
García-Sakai
,
Ian
Silverwood
,
Timothy
Easun
,
Ming
Li
,
Mark
Warren
,
Claire
Murray
,
Chiu
Tang
,
Sihai
Yang
,
Martin
Schroeder
Open Access
Abstract: Understanding the molecular mechanism of proton conduction is crucial for the design of new materials with improved conductivity. Quasi-elastic neutron scattering (QENS) has been used to probe the mechanism of proton diffusion within a new phosphonate-based metal–organic framework (MOF) material, MFM-500(Ni). QENS suggests that the proton conductivity (4.5 × 10–4 S/cm at 98% relative humidity and 25 °C) of MFM-500(Ni) is mediated by intrinsic “free diffusion inside a sphere”, representing the first example of such a mechanism observed in MOFs.
|
May 2016
|
|