I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[22138]
Abstract: Coordination pillared-layer metal-organic frameworks (CPL-MOFs), such as CPL-2, are interesting versatile and porous materials with the potential for gas adsorption and separation. CPL-2 shows the unusual and gradual linker rotation upon the adsorption of ethylene (C2H4) and ethane (C2H6), leading to a fully reversible adsorption isotherm specifically under the conditions studied. Grand canonical Monte Carlo (GCMC) simulations showed that it is impossible to accommodate the experimentally observed loadings of C2H4 and C2H6 in CPL-2 using the crystallographic structure reported in the literature. According to the simulation findings, the pore expansion might be initiated by the clockwise 4,4′-bipyridine (bpy) pillar linker rotation. The pillar rotation leads to the enlarged pore volume, rendering additional adsorption sites, which are not present in the pristine structure. In situ synchrotron PXRD experiments for C2H4 and C2H6 adsorption on CPL-2 confirmed the occurrence of pore expansion in CPL-2 MOF. The combined experimental and simulation study shows for the first time that the linker rotation in CPL-2 can result in a adsorption isotherm without hysteresis. This work developed a real insight into the nature of pillared-layer MOFs, and the revealed structural changes could be potentially exploited to enhance alkene and alkane working capacities of such microporous materials.
|
Feb 2020
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[20141]
Abstract: Tetrahedrite, Cu12Sb4S13, is an abundant mineral with excellent thermoelectric properties owing to its low thermal conductivity. The electronic and structural origin of the intriguing physical properties of tetrahedrite, including its metal‐to‐semiconductor transition (MST), remains largely unknown. This work presents the first determination of the low‐temperature structure of tetrahedrite that accounts for its unique properties. Contrary to prior conjectures, the results show that the trigonal–planar copper cations remain in planar coordination below the MST. The atomic displacement parameters of the trigonal–planar copper cations, which have been linked to low thermal conductivity, increase by 200% above the MST. The phase transition is a consequence of the orbital degeneracy of the highest occupied 3d cluster orbitals of the copper clusters found in the cubic phase. This study reveals that a Jahn–Teller electronic instability leads to the formation of “molecular‐like” Cu57+ clusters and suppresses copper rattling vibrations due to the strengthening of direct copper–copper interactions. First principles calculations demonstrate that the structural phase transition opens a small band gap in the electronic density of states and eliminates the unstable phonon modes. These results provide insights on the interplay between phonon transport, electronic properties, and crystal structure in mixed‐valence compounds.
|
Feb 2020
|
|
I11-High Resolution Powder Diffraction
|
Yi-Yeoun
Kim
,
Robert
Darkins
,
Alexander
Broad
,
Alexander N.
Kulak
,
Mark A.
Holden
,
Ouassef
Nahi
,
Steven P.
Armes
,
Chiu C.
Tang
,
Rebecca F.
Thompson
,
Frederic
Marin
,
Dorothy M.
Duffy
,
Fiona C.
Meldrum
Open Access
Abstract: Acidic macromolecules are traditionally considered key to calcium carbonate biomineralisation and have long been first choice in the bio-inspired synthesis of crystalline materials. Here, we challenge this view and demonstrate that low-charge macromolecules can vastly outperform their acidic counterparts in the synthesis of nanocomposites. Using gold nanoparticles functionalised with low charge, hydroxyl-rich proteins and homopolymers as growth additives, we show that extremely high concentrations of nanoparticles can be incorporated within calcite single crystals, while maintaining the continuity of the lattice and the original rhombohedral morphologies of the crystals. The nanoparticles are perfectly dispersed within the host crystal and at high concentrations are so closely apposed that they exhibit plasmon coupling and induce an unexpected contraction of the crystal lattice. The versatility of this strategy is then demonstrated by extension to alternative host crystals. This simple and scalable occlusion approach opens the door to a novel class of single crystal nanocomposites.
|
Dec 2019
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Longfei
Lin
,
Alena M.
Sheveleva
,
Ivan
Da Silva
,
Christopher M. A.
Parlett
,
Zhimou
Tang
,
Yueming
Liu
,
Mengtian
Fan
,
Xue
Han
,
Joseph H.
Carter
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Yongqiang
Cheng
,
Luke L.
Daemen
,
Svemir
Rudic
,
Anibal J.
Ramirez-Cuesta
,
Chiu C.
Tang
,
Sihai
Yang
Diamond Proposal Number(s):
[15151, 24726]
Abstract: The efficient production of light olefins from renewable biomass is a vital and challenging target to achieve future sustainable chemical processes. Here we report a hetero-atomic MFI-type zeolite (NbAlS-1), over which aqueous solutions of γ-valerolactone (GVL), obtained from biomass-derived carbohydrates, can be quantitatively converted into butenes with a yield of >99% at ambient pressure under continuous flow conditions. NbAlS-1 incorporates simultaneously niobium(v) and aluminium(iii) centres into the framework and thus has a desirable distribution of Lewis and Brønsted acid sites with optimal strength. Synchrotron X-ray diffraction and absorption spectroscopy show that there is cooperativity between Nb(v) and the Brønsted acid sites on the confined adsorption of GVL, whereas the catalytic mechanism for the conversion of the confined GVL into butenes is revealed by in situ inelastic neutron scattering, coupled with modelling. This study offers a prospect for the sustainable production of butene as a platform chemical for the manufacture of renewable materials.
|
Dec 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
I12-JEEP: Joint Engineering, Environmental and Processing
|
Harry G. W.
Godfrey
,
Lydia
Briggs
,
Xue
Han
,
William J. F.
Trenholme
,
Christopher
Morris
,
Mathew
Savage
,
Louis
Kimberley
,
Oxana
Magdysyuk
,
Michael
Drakopoulos
,
Claire A.
Murray
,
Chiu C.
Tang
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[11278]
Open Access
Abstract: Understanding the mechanism of assembly and function of metal-organic frameworks (MOFs) is important for the development of practical materials. Herein, we report a time-resolved diffraction analysis of the kinetics of formation of a robust MOF, MFM-300(Fe), which shows high adsorption capacity for CO2 (9.55 mmol g−1 at 293 K and 20 bar). Applying the Avrami-Erofe’ev and the two-step kinetic Finke-Watzky models to in situ high-energy synchrotron X-ray powder diffraction data obtained during the synthesis of MFM-300(Fe) enables determination of the overall activation energy of formation (50.9 kJ mol−1), the average energy of nucleation (56.7 kJ mol−1), and the average energy of autocatalytic growth (50.7 kJ mol−1). The synthesis of MFM-300(Fe) has been scaled up 1000-fold, enabling the successful breakthrough separations of the CO2/N2 mixture in a packed-bed with a selectivity for CO2/N2 of 21.6. This study gives an overall understanding for the intrinsic behaviors of this MOF system, and we have determined directly the binding domains and dynamics for adsorbed CO2 molecules within the pores of MFM-300(Fe).
|
Nov 2019
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[20626]
Abstract: Variable-temperature single-crystal and powder X-ray diffraction techniques have been used to study the thermal and mechanical decomposition of the acetonitrile solvate of the co-crystal formed between piroxicam and succinic acid (PRXSA-ACN). The results show that the thermal expansion behavior of PRXSA-ACN is highly anisotropic and can be correlated with structural features of the crystal lattice. Thermally-induced desolvation of PRXSA-ACN led initially to the formation of the α-form of piroxicam and the 1:1 piroxicam:succinic acid co-crystal (PRXSA), and this can be rationalized on the basis of the crystal structure of PRXSA-ACN and its thermal expansion behavior. Subsequent decomposition of PRXSA produced amorphous succinic acid and the thermodynamically more stable β-form of piroxicam. The α- and β-forms co-existed up until the melting point of the α-form, at which point the sample recrystallized to give the β-form of piroxicam. Mechanical treatment (light grinding) of PRXSA-ACN resulted in mild structural damage to the crystal structure and this led to subsequent desolvation.
|
Nov 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Gemma L.
Smith
,
Jennifer E.
Eyley
,
Xue
Han
,
Xinran
Zhang
,
Jiangnan
Li
,
Nicholas M.
Jacques
,
Harry G. W.
Godfrey
,
Stephen P.
Argent
,
Laura J.
Mccormick Mcpherson
,
Simon J.
Teat
,
Yongqiang
Cheng
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Sarah
Day
,
Chiu C.
Tang
,
Timothy L.
Easun
,
Svemir
Rudic
,
Anibal J.
Ramirez-Cuesta
,
Sihai
Yang
,
Martin
Schroeder
Abstract: Emissions of SO2 from flue gas and marine transport have detrimental impacts on the environment and human health, but SO2 is also an important industrial feedstock if it can be recovered, stored and transported efficiently. Here we report the exceptional adsorption and separation of SO2 in a porous material, [Cu2(L)] (H4L = 4′,4‴-(pyridine-3,5-diyl)bis([1,1′-biphenyl]-3,5-dicarboxylic acid)), MFM-170. MFM-170 exhibits fully reversible SO2 uptake of 17.5 mmol g−1 at 298 K and 1.0 bar, and the SO2 binding domains for trapped molecules within MFM-170 have been determined. We report the reversible coordination of SO2 to open Cu(ii) sites, which contributes to excellent adsorption thermodynamics and selectivities for SO2 binding and facile regeneration of MFM-170 after desorption. MFM-170 is stable to water, acid and base and shows great promise for the dynamic separation of SO2 from simulated flue gas mixtures, as confirmed by breakthrough experiments.
|
Oct 2019
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[13116]
Abstract: Promising piezoelectric properties have been reported in potassium sodium niobate-based ceramics by introducing Bi0.5(Na0.82K0.18)0.5ZrO3 (BNKZ) into K0.48Na0.52Nb0.95Sb0.05O3 (KNNS) solid solutions in order to control the polymorphic phase transformation temperatures. In the present study, synchrotron x-ray powder diffraction (SXPD) was employed in combination with dielectric and ferroelectric measurements in order to clarify the influence of BNKZ on the phase transition temperatures of (1-x)KNNS-(x)BNKZ ceramics (with x = 0 to 0.05). The results, presented in terms of temperature-dependent SXPD patterns, dielectric permittivity and thermal depolarisation characteristics, confirmed that polymorphic phase transformation temperatures all shifted in a systematic manner with increasing BNKZ content. Broadening of the phase transition regions was also observed with increasing BNKZ content, leading to improvements in thermal stability of the ferroelectric properties. Microstructural examination of the KNNS-BNKZ ceramics revealed the presence of core-shell microstructures; this was correlated with the presence of weak shoulders on the diffraction peaks.
|
Oct 2019
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[19792]
Abstract: This work demonstrates precision control of hydrogen content in La(Fe,Co,Si)13Hδ for the development of environmentally friendly magnetocaloric-based cooling technologies, using an electrolytic hydriding technique. We show the Curie temperature, a critical parameter which directly governs the temperature window of effective cooling, can be varied easily and reproducibly in 1 K steps within the range 274 K to 402 K. Importantly, both partially (up to 10%) and fully hydrided compositions retain favorable entropy change values comparable to that of the base composition. Crucially, we show in these second-order phase transition compounds, partial hydriding is stable and not susceptible against phase separation.
|
Oct 2019
|
|
I11-High Resolution Powder Diffraction
|
Abstract: Pure anhydrous Cu(CH3COO)2 was obtained both, by thermal dehydration of Cu(CH3COO)2·H2O and by drying a commercially purchased mixture of Cu(CH3COO)2·H2O and Cu(CH3COO)2 in a nitrogen atmosphere using P2O5 as drying agent. The crystal structure was solved ab initio from synchrotron X‐ray powder diffraction (XRPD) data at 150 °C and from laboratory XRPD data at ambient conditions and found to be isotypic to anhydrous chromium(II), molybdenum(II) and rhodium(II) acetate. Cu(CH3COO)2 crystallizes in space group P1 (no. 2) with lattice parameters of a = 5.1486(3) Å, b = 7.5856(6) Å, c = 8.2832(6) Å, α = 77.984(4)°, β = 75.911(8)°, γ = 84.256(6)° at ambient conditions. Cu2(CH3COO)4 paddle wheels with short (2.6 Å) Cu–Cu distances form chains in a direction, which is the main motif in the crystal structure. Due to their identical structural main motif Cu(CH3COO)2·H2O and Cu(CH3COO)2 exhibit a similar bluish‐green color, almost identical UV/Vis spectra and comparable magnetic properties. The temperature dependent magnetic susceptibility also indicates only weak inter‐dimer spin exchange between neighbouring Cu2(CH3COO)4 paddle wheels.
|
Jul 2019
|
|