B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
I12-JEEP: Joint Engineering, Environmental and Processing
|
Harry G. W.
Godfrey
,
Lydia
Briggs
,
Xue
Han
,
William J. F.
Trenholme
,
Christopher
Morris
,
Mathew
Savage
,
Louis
Kimberley
,
Oxana
Magdysyuk
,
Michael
Drakopoulos
,
Claire A.
Murray
,
Chiu C.
Tang
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[11278]
Open Access
Abstract: Understanding the mechanism of assembly and function of metal-organic frameworks (MOFs) is important for the development of practical materials. Herein, we report a time-resolved diffraction analysis of the kinetics of formation of a robust MOF, MFM-300(Fe), which shows high adsorption capacity for CO2 (9.55 mmol g−1 at 293 K and 20 bar). Applying the Avrami-Erofe’ev and the two-step kinetic Finke-Watzky models to in situ high-energy synchrotron X-ray powder diffraction data obtained during the synthesis of MFM-300(Fe) enables determination of the overall activation energy of formation (50.9 kJ mol−1), the average energy of nucleation (56.7 kJ mol−1), and the average energy of autocatalytic growth (50.7 kJ mol−1). The synthesis of MFM-300(Fe) has been scaled up 1000-fold, enabling the successful breakthrough separations of the CO2/N2 mixture in a packed-bed with a selectivity for CO2/N2 of 21.6. This study gives an overall understanding for the intrinsic behaviors of this MOF system, and we have determined directly the binding domains and dynamics for adsorbed CO2 molecules within the pores of MFM-300(Fe).
|
Nov 2019
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[20626]
Abstract: Variable-temperature single-crystal and powder X-ray diffraction techniques have been used to study the thermal and mechanical decomposition of the acetonitrile solvate of the co-crystal formed between piroxicam and succinic acid (PRXSA-ACN). The results show that the thermal expansion behavior of PRXSA-ACN is highly anisotropic and can be correlated with structural features of the crystal lattice. Thermally-induced desolvation of PRXSA-ACN led initially to the formation of the α-form of piroxicam and the 1:1 piroxicam:succinic acid co-crystal (PRXSA), and this can be rationalized on the basis of the crystal structure of PRXSA-ACN and its thermal expansion behavior. Subsequent decomposition of PRXSA produced amorphous succinic acid and the thermodynamically more stable β-form of piroxicam. The α- and β-forms co-existed up until the melting point of the α-form, at which point the sample recrystallized to give the β-form of piroxicam. Mechanical treatment (light grinding) of PRXSA-ACN resulted in mild structural damage to the crystal structure and this led to subsequent desolvation.
|
Nov 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Gemma L.
Smith
,
Jennifer E.
Eyley
,
Xue
Han
,
Xinran
Zhang
,
Jiangnan
Li
,
Nicholas M.
Jacques
,
Harry G. W.
Godfrey
,
Stephen P.
Argent
,
Laura J.
Mccormick Mcpherson
,
Simon J.
Teat
,
Yongqiang
Cheng
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Sarah
Day
,
Chiu C.
Tang
,
Timothy L.
Easun
,
Svemir
Rudic
,
Anibal J.
Ramirez-cuesta
,
Sihai
Yang
,
Martin
Schroeder
Abstract: Emissions of SO2 from flue gas and marine transport have detrimental impacts on the environment and human health, but SO2 is also an important industrial feedstock if it can be recovered, stored and transported efficiently. Here we report the exceptional adsorption and separation of SO2 in a porous material, [Cu2(L)] (H4L = 4′,4‴-(pyridine-3,5-diyl)bis([1,1′-biphenyl]-3,5-dicarboxylic acid)), MFM-170. MFM-170 exhibits fully reversible SO2 uptake of 17.5 mmol g−1 at 298 K and 1.0 bar, and the SO2 binding domains for trapped molecules within MFM-170 have been determined. We report the reversible coordination of SO2 to open Cu(ii) sites, which contributes to excellent adsorption thermodynamics and selectivities for SO2 binding and facile regeneration of MFM-170 after desorption. MFM-170 is stable to water, acid and base and shows great promise for the dynamic separation of SO2 from simulated flue gas mixtures, as confirmed by breakthrough experiments.
|
Oct 2019
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[19792]
Abstract: This work demonstrates precision control of hydrogen content in La(Fe,Co,Si)13Hδ for the development of environmentally friendly magnetocaloric-based cooling technologies, using an electrolytic hydriding technique. We show the Curie temperature, a critical parameter which directly governs the temperature window of effective cooling, can be varied easily and reproducibly in 1 K steps within the range 274 K to 402 K. Importantly, both partially (up to 10%) and fully hydrided compositions retain favorable entropy change values comparable to that of the base composition. Crucially, we show in these second-order phase transition compounds, partial hydriding is stable and not susceptible against phase separation.
|
Oct 2019
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[13116]
Abstract: Promising piezoelectric properties have been reported in potassium sodium niobate-based ceramics by introducing Bi0.5(Na0.82K0.18)0.5ZrO3 (BNKZ) into K0.48Na0.52Nb0.95Sb0.05O3 (KNNS) solid solutions in order to control the polymorphic phase transformation temperatures. In the present study, synchrotron x-ray powder diffraction (SXPD) was employed in combination with dielectric and ferroelectric measurements in order to clarify the influence of BNKZ on the phase transition temperatures of (1-x)KNNS-(x)BNKZ ceramics (with x = 0 to 0.05). The results, presented in terms of temperature-dependent SXPD patterns, dielectric permittivity and thermal depolarisation characteristics, confirmed that polymorphic phase transformation temperatures all shifted in a systematic manner with increasing BNKZ content. Broadening of the phase transition regions was also observed with increasing BNKZ content, leading to improvements in thermal stability of the ferroelectric properties. Microstructural examination of the KNNS-BNKZ ceramics revealed the presence of core-shell microstructures; this was correlated with the presence of weak shoulders on the diffraction peaks.
|
Oct 2019
|
|
I11-High Resolution Powder Diffraction
|
Abstract: Pure anhydrous Cu(CH3COO)2 was obtained both, by thermal dehydration of Cu(CH3COO)2·H2O and by drying a commercially purchased mixture of Cu(CH3COO)2·H2O and Cu(CH3COO)2 in a nitrogen atmosphere using P2O5 as drying agent. The crystal structure was solved ab initio from synchrotron X‐ray powder diffraction (XRPD) data at 150 °C and from laboratory XRPD data at ambient conditions and found to be isotypic to anhydrous chromium(II), molybdenum(II) and rhodium(II) acetate. Cu(CH3COO)2 crystallizes in space group P1 (no. 2) with lattice parameters of a = 5.1486(3) Å, b = 7.5856(6) Å, c = 8.2832(6) Å, α = 77.984(4)°, β = 75.911(8)°, γ = 84.256(6)° at ambient conditions. Cu2(CH3COO)4 paddle wheels with short (2.6 Å) Cu–Cu distances form chains in a direction, which is the main motif in the crystal structure. Due to their identical structural main motif Cu(CH3COO)2·H2O and Cu(CH3COO)2 exhibit a similar bluish‐green color, almost identical UV/Vis spectra and comparable magnetic properties. The temperature dependent magnetic susceptibility also indicates only weak inter‐dimer spin exchange between neighbouring Cu2(CH3COO)4 paddle wheels.
|
Jul 2019
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[8699]
Abstract: (1-x)Na0.5Bi0.5TiO3-xNaNbO3 (x=0.02, 0.04, 0.06 and 0.08) ceramics were fabricated by solid state reaction. High-resolution synchrotron x-ray powder diffraction (SXPD) data, coupled with macroscopic electromechanical measurements, reveal the occurrence of an electric field-induced irreversible crystallographic transformation for x=0.02 and 0.04, from a pseudo-cubic non-ergodic relaxor to a rhombohedral or coexisting rhombohedral-tetragonal long range-ordered ferroelectric phase respectively. The highest unipolar electrostrain, corresponding to an effective longitudinal piezoelectric strain coefficient of approximately 340 pm V-1, was obtained for x=0.04; this effect is attributed to enhanced domain switching as a result of the co-existing rhombohedral and tetragonal phases for this composition, which is critical for piezoelectric actuator applications.
|
Jul 2019
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[19093]
Abstract: Hydrides Eu3Si4H2+x were obtained by exposing the Zintl phase Eu3Si4 to a hydrogen atmosphere at a pressure of 30 bar and temperatures from 25 to 300 °C. Structural analysis using powder X-ray diffraction (PXRD) data suggested that hydrogenations in a temperature range 25–200 °C afford a uniform hydride phase with an orthorhombic structure (Immm, a ≈ 4.40 Å, b ≈ 3.97 Å, c ≈ 19.8 Å), whereas at 300 °C mixtures of two orthorhombic phases with c ≈ 19.86 and ≈ 19.58 Å were obtained. The assignment of a composition Eu3Si4H2+x is based on first principles DFT calculations, which indicated a distinct crystallographic site for H in the Eu3Si4 structure. In this position, H atoms are coordinated in a tetrahedral fashion by Eu atoms. The resulting hydride Eu3Si4H2 is stable by −0.46 eV/H atom with respect to Eu3Si4 and gaseous H2. Deviations between the lattice parameters of the DFT optimized Eu3Si4H2 structure and the ones extracted from PXRD patterns pointed to the presence of additional H in interstitials also involving Si atoms. Subsequent DFT modeling of compositions Eu3Si4H3 and Eu3Si4H4 showed considerably better agreement to the experimental unit cell volumes. It was then concluded that the hydrides of Eu3Si4 have a composition Eu3Si4H2+x (x < 2) and are disordered with respect to H in Si2Eu3 interstitials. Eu3Si4 is a ferromagnet with a TC at about 120 K. Ferromagnetism is effectively quenched in Eu3Si4H2+x. The effective magnetic moment for both materials is 7.5 μB which is typical for compounds containing Eu2+ 4f7 ions.
|
May 2019
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Zoe N.
Taylor
,
Arnaud J.
Perez
,
Jose A.
Coca-clemente
,
Filipe
Braga
,
Nicholas E.
Drewett
,
Michael J.
Pitcher
,
William J.
Thomas
,
Matthew S.
Dyer
,
Christopher
Collins
,
Marco
Zanella
,
Timothy
Johnson
,
Sarah
Day
,
Chiu
Tang
,
Vinod R
Dhanak
,
John B.
Claridge
,
Laurence J.
Hardwick
,
Matthew J.
Rosseinsky
Abstract: Multinary lithium oxides with the rock salt structure are of technological importance as cathode materials in rechargeable lithium ion batteries. Current state of the art cathodes such as LiNi1/3Mn1/3Co1/3O2 rely on redox cycling of earth-abundant transition metal cations to provide charge capacity. Recently, the possibility of using the oxide anion as a redox center in Li-rich rock salt oxides has been established as a new paradigm in the design of cathode materials with enhanced capacities (> 200 mAh/g). To increase the lithium content and access electrons from oxygen-derived states, these materials typically require transition metals in high oxidation states, which can be easily achieved using d0 cations. However, Li-rich rocksalt oxides with high valent d0 cations such as Nb5+ and Mo6+ show strikingly high voltage hysteresis between charge and discharge, the origin of which is uninvestigated. In this work, we study a series of Li-rich compounds, Li4+xNi1-xWO6 (0 ≤ x ≤ 0.25), adopting two new and distinct cation-ordered variants of the rock salt structure. The phase Li4.15Ni0.85WO6 (x = 0.15) has a large reversible capacity of 200 mAh/g, without accessing the Ni3+/Ni4+ redox couple, implying that over two-thirds of the capacity is due to anionic redox, with good cyclability. The presence of the 5d0 W6+ cation affords extensive (> 2 V) voltage hysteresis associated with the anionic redox. We present experimental evidence for the formation of strongly stabilized localized O-O single bonds that explain the energy penalty required to reduce the material upon discharge. The high valent d0 cation associates localized anion-anion bonding with the anion redox capacity.
|
Apr 2019
|
|
I11-High Resolution Powder Diffraction
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[11544, 9981]
Abstract: We report the synthesis, crystal structure, and thermally-driven phase transformation of the dicyanometallate superperovskite co-crystal [NBu4]Mn[Au(CN)2]3·[NBu4]ClO4. This phase is understandable in terms of the conventional ABX3 perovskite structure type, but with the NBu4+ A-site cation displaced onto the perovskite cage face and 1-dimensional AX′ chains included within framework pores opened up by these displacements. On heating to 380 K, the co-crystal disproportionates into its two inorganic components: a bcs-structured ABX3 phase and [NBu4]ClO4. This system illustrates a new type of structural and phase complexity accessible to dicyanometallate perovskites.
|
Apr 2019
|
|