I12-JEEP: Joint Engineering, Environmental and Processing
|
Yunhui
Chen
,
Samuel J.
Clark
,
David M.
Collins
,
Sebastian
Marussi
,
Simon A.
Hunt
,
Danielle
Fenech
,
Thomas
Connolley
,
Robert C.
Atwood
,
Oxana V.
Magdysyuk
,
Gavin J.
Baxter
,
Martyn A.
Jones
,
Chu Lun Alex
Leung
,
Peter D.
Lee
Diamond Proposal Number(s):
[20096]
Abstract: The governing mechanistic behaviour of Directed Energy Deposition Additive Manufacturing (DED-AM) is revealed by a combined in situ and operando synchrotron X-ray imaging and diffraction study of a nickel-base superalloy, IN718. Using a unique DAE-AM process replicator, real-space imaging enables quantification of the melt-pool boundary and flow dynamics during solidification. This imaging knowledge was also used to informed precise diffraction measurements of temporally resolved microstructural phases during transformation and stress development with a spatial resolution of 100 µm. The diffraction quantified thermal gradient enabled a dendritic solidification microstructure to be predicted and coupled to the stress orientation and magnitude. The fast cooling rate entirely suppressed the formation of secondary phases or recrystallisation in the solid-state. Upon solidification, the stresses rapidly increase to the yield strength during cooling. This insight, combined with the large solidification range of IN718 suggests that the accumulated plasticity exhausts the ductility of the alloy, causing liquation cracking. This study has revealed additional fundamental mechanisms governing the formation of highly non-equilibrium microstructures during DED-AM.
|
Mar 2021
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Yunhui
Chen
,
Samuel J.
Clark
,
Lorna
Sinclair
,
Chu Lun Alex
Leung
,
Sebastian
Marussi
,
Thomas
Connolley
,
Robert C.
Atwood
,
Gavin J.
Baxter
,
Martyn A.
Jones
,
Iain
Todd
,
Peter D.
Lee
Diamond Proposal Number(s):
[20096]
Abstract: Directed Energy Deposition Additive Manufacturing (DED-AM) is transformative for the production of larger, geometrically complex metallic components. However, the mechanical properties of titanium alloy DED-AM components do not always reach their full potential due to microstructural features including porosity and regions of lack of fusion. Using in situ and operando synchrotron X-ray imaging we gain insights into key laser-matter interaction and microstructural feature formation mechanisms during DED-AM of Ti-6242. Analysis of the process conditions reveals that laser power is dominant for build efficiency while higher traverse speed can effectively reduce lack of fusion regions. We also elucidate the mechanisms underlying several physical phenomena occurring during the deposition of titanium alloys, including the formation of a saddle-shaped melt pool and pore pushing. The findings of this work clarify the transient kinetics behind the DED-AM of titanium alloys and can be used as a guide for optimising industrial additive manufacturing processes.
|
Mar 2021
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[15444]
Abstract: Inorganic/organic hybrids have co-networks of inorganic and organic components, with the aim of obtaining synergy of the properties of those components. Here, a silica-gelatin sol-gel hybrid “ink” was directly 3D printed to produce 3D grid-like scaffolds, using a coupling agent, 3-glycidyloxypropyl)trimethoxysilane (GPTMS), to form covalent bonds between the silicate and gelatin co-networks. Scaffolds were printed with 1 mm strut separation, but the drying method affected the final architecture and properties. Freeze drying produced <40 μm struts and large ~700 μm channels. Critical point drying enabled strut consolidation and optimal mechanical properties, with ~160 μm struts and ~200 μm channels, which improved mechanical properties. This architecture was critical to cellular response: when chondrocytes were seeded on the scaffolds with 200 μm wide pore channels in vitro, collagen Type II matrix was preferentially produced (negligible amount of Type I or X were observed), indicative of hyaline-like cartilaginous matrix formation, but when pore channels were 700 μm wide, Type I collagen was prevalent. This was supported by Sox9 and Aggrecan expression. The scaffolds have potential for regeneration of articular cartilage regeneration, particularly in sports medicine cases.
|
Feb 2021
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Yunhui
Chen
,
Samuel J.
Clark
,
Yuze
Huang
,
Lorna
Sinclair
,
Chu Lun Alex
Leung
,
Sebastian
Marussi
,
Thomas
Connolley
,
Oxana V.
Magdysyuk
,
Robert C.
Atwood
,
Gavin J.
Baxter
,
Martyn A.
Jones
,
Iain
Todd
,
Peter D.
Lee
Diamond Proposal Number(s):
[20096]
Open Access
Abstract: The Directed Energy Deposition Additive Manufacturing (DED-AM) of SS316L was studied using in situ and operando synchrotron X-ray imaging to quantitively understand the effect of processing parameters on the melt-pool morphology and surface quality. It was found that surface roughness of DED-AM builds can result from melt pool surface perturbations caused by changes in the melt flow and build stage motion perturbations. Process maps are developed that quantitatively correlate build quality to process parameters including powder feed rate, laser power and traverse speed. How the AM process parameters control build efficacy is clarified, and the processing conditions required to dampen surface perturbations leading to roughness were determined.
|
Dec 2020
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[15506]
Abstract: The feasibility and advantages of synchrotron imaging have been demonstrated to effectively characterise fracture initiation and propagation in shales during indentation tests. These include 1) fast (minute-scale) and high-resolution (μm-scale) imaging of fracture initiation, 2) concurrent spatial and temporal information (4D) about fracture development, 3) quantification and modelling of shale deformation prior to fracture. Imaging experiments were performed on four shale samples with different laminations and compositions in different orientations, representative of three key variables in shale microstructure. Fracture initiation and propagation were successfully captured in 3D over time, and strain maps were generated using digital volume correlation (DVC). Subsequently, post-experimental fracture geometries were characterized at nano-scale using complementary SEM imaging. Characterisation results highlight the influence of microstructural and anisotropy variations on the mechanical properties of shales. The fractures tend to kink at the interface of two different textures at both macroscale and microscale due to deformation incompatibility. The average composition appears to provide the major control on hardness and fracture initiation load; while the material texture and the orientation of the indentation to bedding combine to control the fracture propagation direction and geometry. This improved understanding of fracture development in shales is potentially significant in the clean energy applications.
|
Oct 2020
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[12631, 13764, 19216]
Abstract: A key technique for controlling solidification microstructures is magneto-hydrodynamics (MHD), resulting from imposing a magnetic field to solidifying metals and alloys. Applications range from bulk stirring to flow control and turbulence damping via the induced Lorentz force. Over the past two decades the Lorentz force caused by the interaction of thermoelectric currents and the magnetic field, a MHD phenomenon known as Thermoelectric Magnetohydrodynamics (TEMHD), was also shown to drive inter-dendritic flow altering microstructural evolution. In this contribution, high-speed synchrotron X-ray tomography and computational simulation are coupled to reveal the evolution, dynamics and mechanisms of solidification within a magnetic field, resolving the complex interplay and competing flow effects arising from Lorentz forces of different origins. The study enabled us to reveal the mechanisms disrupting the traditional columnar dendritic solidification microstructure, ranging from an Archimedes screw-like structure, to one with a highly refined dendritic primary array. We also demonstrate that alloy composition can be tailored to increase or decrease the influence of MHD depending on the Seebeck coefficient and relative density of the primary phase and interdendritic liquid. This work paves the way towards novel computational and experimental methods of exploiting and optimising the application of MHD in solidification processes, together with the calculated design of novel alloys that utilise these forces.
|
Jun 2020
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[13240]
Abstract: A 4D imaging study (3D + time) combining synchrotron tomography with in situ tensile testing has been carried out to observe the fibre and network level micromechanics of paper made from northern bleached softwood kraft (NBSK). Quantitative image analysis and digital volume correlation is used to characterize local deformation, the evolution of fibre-fibre contacts, and fibre straightening in a ”freeze-dried” handsheet as well as standard handsheets low consistency refined at different refining energies. In the freeze-dried handsheet having low fibre conformability, the results show that deformation at the network level occurs because of fibre straightening and possible inter-fibre bond breakage. Further, significant out-of-plane deformation near the failure regions was observed, which led to auxetic behaviour. In the refined handsheets, a strong inverse correlation is seen between refining energy, thickness expansion, and the number of broken fibres. The use of out-of-plane strain norms is proposed as a method to determine network efficiency (i.e. the ratio of the network’s elastic modulus to that of the constituent fibres) as well as the relative contribution of fibre pull-out to the overall failure of the handsheet.
|
May 2020
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[20096]
Open Access
Abstract: Directed Energy Deposition Additive Manufacturing (DED-AM) is one of the
principal AM techniques being explored for both the repair of high value components in the
aerospace industry as well as freeform fabrication of large metallic components. However, the
lack of fundamental understanding of the underlying process-structure-property relationships
hinders the utilisation of DED-AM for the production or repair of safety-critical components.
This study uses in situ and operando synchrotron X-ray imaging to provide an improved
fundamental understanding of laser-matter interactions and their influence on the melt pool
geometry. Coupled with process modelling, these unique observations illustrate how process
parameters can influence the DED-AM melt pool geometry. The calibrated simulation can be
used for guidance in an industrial additive manufacturing process for microstructure and quality
control.
|
May 2020
|
|
|
Abstract: The effect of gravity on thermo-solutal convection and its impact on solidification dynamics of an Al-15 wt%Cu alloy were studied using high speed synchrotron tomography. A method for mapping the composition of the solidifying samples was developed, enabling three-dimensional quantification of the time evolved solute concentration and dendrite morphology. Differences in solute segregation, dendrite morphology and fragmentation between upwards and downwards solidification were identified, which were attributed to buoyancy-modulated thermal-solutal convection.
|
Apr 2020
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Margherita
Polacci
,
Fabio
Arzilli
,
Giuseppe
La Spina
,
Nolwenn
Le Gall
,
Rafael
Torres Orozco
,
Margaret
Hartley
,
Danilo
Di Genova
,
Robert
Atwood
,
Ed
Llewellin
,
Richard
Brooker
,
Heidy
Mader
,
Peter
Lee
,
Mike
Burton
Open Access
Abstract: Basaltic volcanism is strongly influenced by magmatic viscosity, which, in turn, is controlled by magma composition, crystallisation, oxygen fugacity and vesiculation. We developed an environmental cell to replicate the pressure and temperature during magma ascent from crustal storage to the surface, while capturing crystallisation using in-situ 4D X-ray computed microtomography. Crystallisation experiments were performed at Diamond Light Source, using monochromatic 53 keV X-rays, a pixel size of 3.2 μm, a sample to detector distance of 2000 mm, 1440 projections per 180 deg, an acquisition time of 0.04 s, and a rotation velocity of 3.125 deg.s-1. The redox conditions were controlled using an oxidised nickel disk for each experiment. Our starting materials were samples made of crystal-free glass cylinders (Ø 3 mm) from the 2001 Etna eruption with 0.9 and 0.8 wt. % water content. In the experiments, samples and crucibles were sealed initially by applying ~10 N loads. All samples were then heated up above glass transition (between 800 °C and 900 °C) in order to allow sample homogenisation while preventing volatiles exsolution. We then pressurised each sample by applying uniaxial loads (between 80 and 380 N), using high-degree alumina pistons, in order to generate enough internal pressure to maintain bubble-free samples when the desired high temperature was reached. Once at the initial high temperature, we began experiments via dropping the temperature to different target isothermal (from 1210 to 1130 °C or 1180 to 1110 °C) and isobaric conditions (8 and 10 MPa, respectively). For the whole duration of the experiments, we were able to observe directly and record pyroxene crystal nucleation and growth. Specifically, we were able to observe pyroxene nucleation on bubbles at small undercooling (∆T) and epitaxial growth of pyroxene at large ∆T. An increase of ∆T (up to 50 °C) can be associated with a decompression of a magma chamber or a decompression during magma ascent in the conduit. As ∆T = 30 - 50 °C can be reached in most of the basaltic volcanic systems on Earth, our results provide a feasible explanation of which mechanisms control nucleation and growth of pyroxene crystals in hydrous basaltic magmas. In addition, epitaxial growth promotes a faster increase of the crystal volume. As a larger crystal content translates into a higher viscosity, our results have important implications for magma rheology, and are extremely important to improve our understanding of magma ascent dynamics during volcanic eruptions, and our capacity to predict eruptions and mitigate volcanic hazards.
|
Mar 2020
|
|