I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Mark A.
Tye
,
N. Connor
Payne
,
Catrine
Johansson
,
Kritika
Singh
,
Sofia A.
Santos
,
Lọla
Fagbami
,
Akansha
Pant
,
Kayla
Sylvester
,
Madeline R.
Luth
,
Sofia
Marques
,
Malcolm
Whitman
,
Maria M.
Mota
,
Elizabeth A.
Winzeler
,
Amanda K.
Lukens
,
Emily R.
Derbyshire
,
Udo
Oppermann
,
Dyann F.
Wirth
,
Ralph
Mazitschek
Diamond Proposal Number(s):
[19301]
Open Access
Abstract: The development of next-generation antimalarials that are efficacious against the human liver and asexual blood stages is recognized as one of the world’s most pressing public health challenges. In recent years, aminoacyl-tRNA synthetases, including prolyl-tRNA synthetase, have emerged as attractive targets for malaria chemotherapy. We describe the development of a single-step biochemical assay for Plasmodium and human prolyl-tRNA synthetases that overcomes critical limitations of existing technologies and enables quantitative inhibitor profiling with high sensitivity and flexibility. Supported by this assay platform and co-crystal structures of representative inhibitor-target complexes, we develop a set of high-affinity prolyl-tRNA synthetase inhibitors, including previously elusive aminoacyl-tRNA synthetase triple-site ligands that simultaneously engage all three substrate-binding pockets. Several compounds exhibit potent dual-stage activity against Plasmodium parasites and display good cellular host selectivity. Our data inform the inhibitor requirements to overcome existing resistance mechanisms and establish a path for rational development of prolyl-tRNA synthetase-targeted anti-malarial therapies.
|
Aug 2022
|
|
I03-Macromolecular Crystallography
|
Radoslaw
Nowak
,
Anthony
Tumber
,
Eline
Hendrix
,
Mohammad Salik Zeya
Ansari
,
Manuela
Sabatino
,
Lorenzo
Antonini
,
Regina
Andrijes
,
Eidarus
Salah
,
Nicola
Mautone
,
Francesca Romana
Pellegrini
,
Klemensas
Simelis
,
Akane
Kawamura
,
Catrine
Johansson
,
Daniela
Passeri
,
Roberto
Pellicciari
,
Alessia
Ciogli
,
Donatella
Del Bufalo
,
Rino
Ragno
,
Mathew L.
Coleman
,
Daniela
Trisciuoglio
,
Antonello
Mai
,
Udo
Oppermann
,
Christopher J.
Schofield
,
Dante
Rotili
Diamond Proposal Number(s):
[10619]
Open Access
Abstract: MINA53 is a JmjC domain 2-oxoglutarate-dependent oxygenase that catalyzes ribosomal hydroxylation and is a target of the oncogenic transcription factor c-MYC. Despite its anticancer target potential, no small-molecule MINA53 inhibitors are reported. Using ribosomal substrate fragments, we developed mass spectrometry assays for MINA53 and the related oxygenase NO66. These assays enabled the identification of 2-(aryl)alkylthio-3,4-dihydro-4-oxoypyrimidine-5-carboxylic acids as potent MINA53 inhibitors, with selectivity over NO66 and other JmjC oxygenases. Crystallographic studies with the JmjC demethylase KDM5B revealed active site binding but without direct metal chelation; however, molecular modeling investigations indicated that the inhibitors bind to MINA53 by directly interacting with the iron cofactor. The MINA53 inhibitors manifest evidence for target engagement and selectivity for MINA53 over KDM4–6. The MINA53 inhibitors show antiproliferative activity with solid cancer lines and sensitize cancer cells to conventional chemotherapy, suggesting that further work investigating their potential in combination therapies is warranted.
|
Nov 2021
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Vincent
Fagan
,
Catrine
Johansson
,
Carina
Gileadi
,
Octovia
Monteiro
,
James Edward
Dunford
,
Reshma
Nibhani
,
Martin
Philpott
,
Jessica
Malzahn
,
Graham
Wells
,
Ruth
Farham
,
Adam
Cribbs
,
Nadia
Halidi
,
Fengling
Li
,
Irene
Chau
,
Holger
Greschik
,
Srikannathasan
Velupillai
,
Abdellah
Allali-Hassani
,
James M.
Bennett
,
Thomas
Christott
,
Charline
Giroud
,
Andrew M.
Lewis
,
Kilian V. M.
Huber
,
Nick
Athanasou
,
Chas
Bountra
,
Manfred
Jung
,
Roland
Schüle
,
Masoud
Vedadi
,
Cheryl H.
Arrowsmith
,
Yan
Xiong
,
Jian
Jin
,
Oleg
Fedorov
,
Gillian
Farnie
,
Paul E.
Brennan
,
Udo C. T.
Oppermann
Diamond Proposal Number(s):
[10619, 15433]
Abstract: Modifications of histone tails, including lysine/arginine methylation, provide the basis of a 'chromatin or histone code'. Proteins that con-tain 'reader' domains can bind to these modifications and form specific effector complexes, which ultimately mediate chromatin function. The spindlin1 (SPIN1) protein contains three Tudor methyl-lysine/arginine reader domains and was identified as a putative onco-gene and transcriptional co-activator. Here we report a SPIN1 chemi-cal probe inhibitor with low nanomolar in vitro activity, exquisite selectivity on a panel of methyl reader and writer proteins, and with submicromolar cellular activity. X-ray crystallography showed that this Tudor domain chemical probe simultaneously engages Tudor domains 1 and 2 via a bidentate binding mode. Small molecule inhibition and siRNA knockdown of SPIN1, as well as chemoproteomic studies, iden-tified genes which are transcriptionally regulated by SPIN1 in squa-mous cell carcinoma and suggest that SPIN1 may have a roll in cancer related inflammation and/or cancer metastasis.
|
Sep 2019
|
|
I04-Macromolecular Crystallography
|
Yan
Xiong
,
Holger
Greschik
,
Catrine
Johansson
,
Ludwig
Seifert
,
Johannes
Bacher
,
Kwang-Su
Park
,
Nicolas
Babault
,
Michael L.
Martini
,
Vincent
Fagan
,
Fengling
Li
,
Irene
Chau
,
Thomas
Christott
,
David
Dilworth
,
Dalia
Barsyte-Lovejoy
,
Masoud
Vedadi
,
Cheryl H.
Arrowsmith
,
Paul E.
Brennan
,
Oleg
Fedorov
,
Manfred
Jung
,
Gillian
Farnie
,
Jing
Liu
,
Udo C. T.
Oppermann
,
Roland
Schüle
,
Jian
Jin
Abstract: By screening an epigenetic compound library, we identified that UNC0638, a highly potent inhibitor of the histone methyltransferases G9a and GLP, was a weak inhibitor of SPIN1 (Spindlin 1), a methyllysine reader protein. Our optimization of this weak hit resulted in the discovery of a potent, selective and cell-active SPIN1 inhibitor, compound 3 (MS31). Compound 3 potently inhibited binding of trimethyllysine-containing peptides to SPIN1, displayed high binding affinity, was highly selective for SPIN1 over other epigenetic readers and writers, directly engaged SPIN1 in cells, and was not toxic to non-tumorigenic cells. The crystal structure of the SPIN1–compound 3 complex indicated that it selectively binds Tudor domain II of SPIN1. We also designed a structurally similar but inactive compound 4 (MS31N) as a negative control. Our results have demonstrated for the first time that potent, selective and cell-active fragment-like inhibitors can be generated by targeting a single Tudor domain.
|
Jul 2019
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[1221, 7864, 9948, 15433]
Open Access
Abstract: Biosynthesis of 6-deoxy sugars, including L-fucose, involves a mechanistically complex, enzymatic 4,6-dehydration of hex-ose nucleotide precursors as the first committed step. Here, we determined pre- and post-catalytic complex structures of the human GDP-mannose 4,6-dehydratase at atomic resolution. These structures together with results of molecular dynamics simulation and biochemical characterization of wildtype and mutant enzymes reveal elusive mechanistic details of water elimination from GDP-mannose C5’’ and C6’’, coupled to NADP-mediated hydride transfer from C4’’ to C6’’. We show that concerted acid-base catalysis from only two active-site groups, Tyr179 and Glu157, promotes a syn 1,4-elimination from an enol (not an enolate) intermediate. We also show that the overall multistep catalytic reaction involves least position changes of enzyme and substrate groups; and that it proceeds under conserved exploitation of the basic (minimal) catalytic machinery of short-chain dehydrogenase/reductases.
|
Mar 2019
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Hanna
Tarhonskaya
,
Radoslaw P.
Nowak
,
Catrine
Johansson
,
Aleksandra
Szykowska
,
Anthony
Tumber
,
Rebecca L.
Hancock
,
Pauline
Lang
,
Emily
Flashman
,
Udo
Oppermann
,
Christopher J.
Schofield
,
Akane
Kawamura
Diamond Proposal Number(s):
[11175, 10619]
Open Access
Abstract: Methylation of lysine-4 of histone H3 (H3K4men) is an important regulatory factor in eukaryotic transcription. Removal of the transcriptionally activating H3K4 methylation is catalysed by histone demethylases, including the JmjC KDM5 subfamily. The JmjC KDMs are Fe(II) and 2-oxoglutarate (2OG) dependent oxygenases, some of which are associated with cancer. Altered levels of TCA cycle intermediates, and the associated metabolites D- and L-2-hydroxyglutarate (2HG), can cause changes in chromatin methylation status. We report comprehensive biochemical, structural and cellular studies on the interaction of TCA cycle intermediates with KDM5B which is a current medicinal chemistry target for cancer. The tested TCA intermediates were poor or moderate KDM5B inhibitors, except for oxaloacetate and succinate, which were shown to compete for binding with 2OG. D- and L-2HG were moderately potent inhibitors at levels which might be relevant in cancer cells bearing isocitrate dehydrogenase mutations. Crystallographic analyses with succinate, fumarate, L-malate, oxaloacetate, pyruvate, D- and L-2HG support the kinetic studies showing competition with 2OG. An unexpected binding mode for oxaloacetate was observed in which it coordinates the active site metal via its C-4 carboxylate rather than the C-1 carboxylate/C-2 keto groups. Studies employing immunofluorescence antibody-based assays reveal no changes in H3K4me3 levels in cells ectopically overexpressing KDM5B in response to dosing with TCA cycle metabolite pro-drug esters, suggesting that the high levels of cellular 2OG may preclude inhibition. The combined results reveal the potential for KDM5B inhibition by TCA cycle intermediates, but suggest that in cells such inhibition will normally be effectively competed by 2OG.
|
Aug 2017
|
|
I02-Macromolecular Crystallography
|
Anthony
Tumber
,
Andrea
Nuzzi
,
Edward S.
Hookway
,
Stephanie B.
Hatch
,
Srikannathasan
Velupillai
,
Catrine
Johansson
,
Akane
Kawamura
,
Pavel
Savitsky
,
Clarence
Yapp
,
Aleksandra
Szykowska
,
Na
Wu
,
Chas
Bountra
,
Claire
Strain-Damerell
,
Nicola A.
Burgess-Brown
,
Gian Filippo
Ruda
,
Oleg
Fedorov
,
Shonagh
Munro
,
Katherine S.
England
,
Radoslaw P.
Nowak
,
Christopher J.
Schofield
,
Nicholas B.
La Thangue
,
Charlotte
Pawlyn
,
Faith
Davies
,
Gareth
Morgan
,
Nick
Athanasou
,
Susanne
Müller
,
Udo
Oppermann
,
Paul E.
Brennan
Open Access
Abstract: Methylation of lysine residues on histone tail is a dynamic epigenetic modification that plays a key role in chromatin structure and gene regulation. Members of the KDM5 (also known as JARID1) sub-family are 2-oxoglutarate (2-OG) and Fe2+-dependent oxygenases acting as histone 3 lysine 4 trimethyl (H3K4me3) demethylases, regulating proliferation, stem cell self-renewal, and differentiation. Here we present the characterization of KDOAM-25, an inhibitor of KDM5 enzymes. KDOAM-25 shows biochemical half maximal inhibitory concentration values of <100 nM for KDM5A-D in vitro, high selectivity toward other 2-OG oxygenases sub-families, and no off-target activity on a panel of 55 receptors and enzymes. In human cell assay systems, KDOAM-25 has a half maximal effective concentration of ∼50 μM and good selectivity toward other demethylases. KDM5B is overexpressed in multiple myeloma and negatively correlated with the overall survival. Multiple myeloma MM1S cells treated with KDOAM-25 show increased global H3K4 methylation at transcriptional start sites and impaired proliferation.
|
Mar 2017
|
|
B21-High Throughput SAXS
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Catrine
Johansson
,
Velupillai
Srikannathasan
,
Anthony
Tumber
,
Aleksandra
Szykowska
,
Edward S.
Hookway
,
Radoslaw
Nowak
,
Claire
Strain-Damerell
,
Carina
Gileadi
,
Martin
Philpott
,
Nicola
Burgess-Brown
,
Na
Wu
,
Jolanta
Kopec
,
Andrea
Nuzzi
,
Holger
Steuber
,
Ursula
Egner
,
Volker
Badock
,
Shonagh
Munro
,
Nicholas B
Lathangue
,
Sue
Westaway
,
Jack
Brown
,
Nick
Athanasou
,
Rab
Prinjha
,
Paul E
Brennan
,
Udo
Oppermann
Diamond Proposal Number(s):
[10619]
Abstract: Members of the KDM5 (also known as JARID1) family are 2-oxoglutarate- and Fe2+-dependent oxygenases that act as histone H3K4 demethylases, thereby regulating cell proliferation and stem cell self-renewal and differentiation. Here we report crystal structures of the catalytic core of the human KDM5B enzyme in complex with three inhibitor chemotypes. These scaffolds exploit several aspects of the KDM5 active site, and their selectivity profiles reflect their hybrid features with respect to the KDM4 and KDM6 families. Whereas GSK-J1, a previously identified KDM6 inhibitor, showed about sevenfold less inhibitory activity toward KDM5B than toward KDM6 proteins, KDM5-C49 displayed 25–100-fold selectivity between KDM5B and KDM6B. The cell-permeable derivative KDM5-C70 had an antiproliferative effect in myeloma cells, leading to genome-wide elevation of H3K4me3 levels. The selective inhibitor GSK467 exploited unique binding modes, but it lacked cellular potency in the myeloma system. Taken together, these structural leads deliver multiple starting points for further rational and selective inhibitor design.
|
May 2016
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8421]
Abstract: The retinoblastoma tumor suppressor protein pRb is a key regulator of cell cycle progression and mediator of the DNA damage response. Lysine methylation at K810, which occurs within a critical Cdk phosphorylation motif, holds pRb in the hypophosphorylated growth-suppressing state. We show here that methyl K810 is read by the tandem tudor domain containing tumor protein p53 binding protein 1 (53BP1). Structural elucidation of 53BP1 in complex with a methylated K810 pRb peptide emphasized the role of the 53BP1 tandem tudor domain in recognition of the methylated lysine and surrounding residues. Significantly, binding of 53BP1 to methyl K810 occurs on E2 promoter binding factor target genes and allows pRb activity to be effectively integrated with the DNA damage response. Our results widen the repertoire of cellular targets for 53BP1 and suggest a previously unidentified role for 53BP1 in regulating pRb tumor suppressor activity.
|
Aug 2014
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[8421]
Open Access
Abstract: The Jumonji C lysine demethylases (KDMs) are 2-oxoglutarate- and Fe(II)-dependent oxygenases. KDM6A (UTX) and KDM6B (JMJD3) are KDM6 subfamily members that catalyze demethylation of N?-methylated histone 3 lysine 27 (H3K27), a mark important for transcriptional repression. Despite reports stating that UTY(KDM6C) is inactive as a KDM, we demonstrate by biochemical studies, employing MS and NMR, that UTY(KDM6C) is an active KDM. Crystallographic analyses reveal that the UTY(KDM6C) active site is highly conserved with those of KDM6B and KDM6A. UTY(KDM6C) catalyzes demethylation of H3K27 peptides in vitro, analogously to KDM6B and KDM6A, but with reduced activity, due to point substitutions involved in substrate binding. The results expand the set of human KDMs and will be of use in developing selective KDM inhibitors.
|
Jun 2014
|
|