I18-Microfocus Spectroscopy
|
Alexander P.
Morrell
,
Richard A.
Martin
,
Helen M
Roberts
,
Hiram
Castillo-Michel
,
J. Frederick W.
Mosselmans
,
Kalotina
Geraki
,
Adrian T.
Warfield
,
Paul
Lingor
,
Wasif
Qayyum
,
Daniel
Graf
,
Maria
Febbraio
,
Owen
Addison
Diamond Proposal Number(s):
[17638, 23569]
Open Access
Abstract: Exposures to exogenous particles is of increasing concern to human health. Characterising the concentrations, chemical species, distribution, and involvement of the stimulus with the tissue microanatomy is essential in understanding the associated biological response. However, no single imaging technique can interrogate all these features at once which confounds and limits correlative analyses. Developments of synchronous imaging strategies, allowing multiple features to be identified simultaneously, is essential to assess spatial relationships between these key features with greater confidence. Here we present data to first highlight complications of correlative analysis between the tissue microanatomy and elemental composition associated with imaging serial tissue sections. This is achieved by assessing both the cellular and elemental distribution in 3-dimensional space using optical microscopy on serial sections and confocal X-ray fluorescence spectroscopy on bulk samples respectively. We propose a new imaging strategy using lanthanide tagged antibodies with X-ray fluorescence spectroscopy. Using simulations, a series of lanthanide tags were identified as candidate labels for scenarios where tissue sections are imaged. The feasibility and value of the proposed approach is shown where an exposure of Ti was identified concurrently with CD45 positive cells at sub-cellular resolutions. Significant heterogeneity in the distribution of exogenous particles and cells can be present between immediately adjacent serial sections showing clear need of synchronous imaging methods. The proposed approach enables elemental compositions to be correlated with the tissue microanatomy in a highly multiplexed and non-destructive manner at high spatial resolutions with the opportunity for subsequent guided analysis.
|
May 2023
|
|
I18-Microfocus Spectroscopy
|
Garrit
Koller
,
Alexander P.
Morrell
,
Rui Pedro
Galão
,
Suzanne
Pickering
,
Eithne
Macmahon
,
Joanna
Johnson
,
Konstantin
Ignatyev
,
Stuart J. D.
Neil
,
Sherif
Elsharkawy
,
Roland
Fleck
,
Pedro Miguel Pereira
Machado
,
Owen
Addison
Diamond Proposal Number(s):
[28216]
Abstract: Containing the global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been an unprecedented challenge due to high horizontal transmissivity and asymptomatic carriage rates. Lateral flow device (LFD) immunoassays were introduced in late 2020 to detect SARS-CoV-2 infection in asymptomatic or presymptomatic individuals rapidly. While LFD technologies have been used for over 60 years, their widespread use as a public health tool during a pandemic is unprecedented. By the end of 2020, data from studies into the efficacy of the LFDs emerged and showed these point-of-care devices to have very high specificity (ability to identify true negatives) but inadequate sensitivity with high false-negative rates. The low sensitivity (<50%) shown in several studies is a critical public health concern, as asymptomatic or presymptomatic carriers may wrongly be assumed to be noninfectious, posing a significant risk of further spread in the community. Here, we show that the direct visual readout of SARS-CoV-2 LFDs is an inadequate approach to discriminate a potentially infective viral concentration in a biosample. We quantified significant immobilized antigen–antibody-labeled conjugate complexes within the LFDs visually scored as negative using high-sensitivity synchrotron X-ray fluorescence imaging. Correlating quantitative X-ray fluorescence measurements and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) determined numbers of viral copies, we identified that negatively scored samples could contain up to 100 PFU (equivalent here to ∼10 000 RNA copies/test). The study demonstrates where the shortcomings arise in many of the current direct-readout SARS-CoV-2 LFDs, namely, being a deficiency in the readout as opposed to the potential level of detection of the test, which is orders of magnitude higher. The present findings are of importance both to public health monitoring during the Coronavirus Disease 2019 (COVID-19) pandemic and to the rapid refinement of these tools for immediate and future applications.
|
May 2021
|
|
I16-Materials and Magnetism
|
Diamond Proposal Number(s):
[15319]
Abstract: Objective: The structure of the polymer phase of dental resin-based-composites is highly sensitive to photo-polymerisation variables. The objective of this study was to understand how different polymer structures, generated with different photo-polymerisation protocols, respond to thermal perturbation. Methods: Experimental resins were prepared from a series of Bis-GMA/TEGDMA blends (40/60, 50/50 and 60/40 wt.%), with either Camphorquinone/DMAEMA or Lucirin TPO as the photo-initiator system. Resins were photo-polymerised, in a disc geometry, at either relatively ‘high’ (3000 mW cm−2 for 6 s) or ‘low’ (300 mW cm−2 for 60 s) irradiances ensuring matched radiant exposures (18 J cm−2). Specimens were heated, from 20−160 °C at a rate of 5 °C min−1, whilst simultaneous synchrotron X-ray scattering measurements were taken at 5 °C increments to determine changes in polymer chain segment extension and medium-range order as a function of temperature. For each unique resin composition (n = 3), differential scanning calorimetry was used to measure glass transition temperatures using the same heating protocol. A paired t-test was used to determine significant differences in the glass transition temperature between irradiance protocols and photo-initiator chemistry at ɑ = 0.05. Results: Resins pre-polymerised through the use of TPO and or high irradiances demonstrated a reduced rate of chain extension indicative of lower thermal expansion and a larger decrease in relative order when heated below the glass transition temperature. Above the transition temperature, differences in the rate of chain extension were negligible, but slower converted systems showed greater relative order. There was no significant difference in the glass transition temperature between different photo-initiator systems or irradiance protocols.
|
Jan 2020
|
|
I13-2-Diamond Manchester Imaging
|
C. G.
Fenton
,
C. L.
Doig
,
S.
Fareed
,
A.
Naylor
,
A. P.
Morrell
,
O.
Addison
,
C.
Wehmeyer
,
C. D.
Buckley
,
M. S.
Cooper
,
G. G.
Lavery
,
K.
Raza
,
R. S.
Hardy
Diamond Proposal Number(s):
[16654]
Open Access
Abstract: Background: Despite their efficacy in the treatment of chronic inflammation, the prolonged application of therapeutic glucocorticoids (GCs) is limited by significant systemic side effects including glucocorticoid-induced osteoporosis (GIOP). 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a bi-directional enzyme that primarily activates GCs in vivo, regulating tissue-specific exposure to active GC. We aimed to determine the contribution of 11β-HSD1 to GIOP. Methods: Wild type (WT) and 11β-HSD1 knockout (KO) mice were treated with corticosterone (100 μg/ml, 0.66% ethanol) or vehicle (0.66% ethanol) in drinking water over 4 weeks (six animals per group). Bone parameters were assessed by micro-CT, sub-micron absorption tomography and serum markers of bone metabolism. Osteoblast and osteoclast gene expression was assessed by quantitative RT-PCR. Results: Wild type mice receiving corticosterone developed marked trabecular bone loss with reduced bone volume to tissue volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N). Histomorphometric analysis revealed a dramatic reduction in osteoblast numbers. This was matched by a significant reduction in the serum marker of osteoblast bone formation P1NP and gene expression of the osteoblast markers Alp and Bglap. In contrast, 11β-HSD1 KO mice receiving corticosterone demonstrated almost complete protection from trabecular bone loss, with partial protection from the decrease in osteoblast numbers and markers of bone formation relative to WT counterparts receiving corticosterone. Conclusions: This study demonstrates that 11β-HSD1 plays a critical role in GIOP, mediating GC suppression of anabolic bone formation and reduced bone volume secondary to a decrease in osteoblast numbers. This raises the intriguing possibility that therapeutic inhibitors of 11β-HSD1 may be effective in preventing GIOP in patients receiving therapeutic steroids.
|
Aug 2019
|
|
I16-Materials and Magnetism
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[11687, 14117, 15319]
Open Access
Abstract: The influence of reaction rate on the evolving polymer structure of photo-activated dimethacrylate biomedical resins was investigated using neutron and in situ synchrotron X-ray scattering with simultaneous Fourier-transform-near-infrared spectroscopy. Previous studies have correlated the degree of reactive group conversion with mechanical properties, but the impact of polymerization rate on the resultant polymer structure is unknown. Here, we demonstrate that the medium-range structural order at the functional end groups of these materials is dependent on the reaction rate. Accelerating polymerization increases correlation lengths in the methacrylate end groups but reduces the medium-range structural order per converted vinyl bond when compared with more slowly polymerized systems. At faster rates of polymerization, the conformation of atoms at the reacting end group can become fixed into the polymer structure at the onset of autodeceleration, storing residual strain. Neutron scattering confirms that the structural differences observed are reproduced at longer length scales. This effect is not as prominent in systems polymerized at slower rates despite similar final degrees of reactive group conversion. Results suggest that current interpretations of these materials, which extrapolate mechanical properties from conversion, may be incomplete. Accelerating polymerization can introduce structural differences, which will dictate residual strain and may ultimately explain the discrepancies in the predictive modeling of the mechanical behavior of these materials using conventional techniques.
|
Jul 2019
|
|
I14-Hard X-ray Nanoprobe
I18-Microfocus Spectroscopy
|
Open Access
Abstract: Biological exposures to micro- and nano-scale exogenous metal particles generated as a consequence of in-service degradation of orthopaedic prosthetics can result in severe adverse tissues reactions. However, individual reactions are highly variable and are not easily predicted, due to in part a lack of understanding of the speciation of the metal-stimuli which dictates cellular interactions and toxicity. Investigating the chemistry of implant derived metallic particles in biological tissue samples is complicated by small feature sizes, low concentrations and often a heterogeneous speciation and distribution. These challenges were addressed by developing a multi-scale two-dimensional X-ray absorption spectroscopic (XAS) mapping approach to discriminate sub-micron changes in particulate chemistry within ex-vivo tissues associated with failed CoCrMo total hip replacements (THRs). As a result, in the context of THRs, we demonstrate much greater variation in Cr chemistry within tissues compared with previous reports. Cr compounds including phosphate, hydroxide, oxide, metal and organic complexes were observed and correlated with Co and Mo distributions. This variability may help explain the lack of agreement between biological responses observed in experimental exposure models and clinical outcomes. The multi-scale 2D XAS mapping approach presents an essential tool in discriminating the chemistry in dilute biological systems where speciation heterogeneity is expected.
|
Jun 2019
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[16079]
Abstract: Bioactive phosphate glasses are of considerable interest for a range of soft and hard tissue engineering applications. The glasses are degradable and can release biologically important ions in a controlled manner. The glasses can also potentially be used as an antimicrobial delivery system. In the given study, novel cobalt doped phosphate-based glasses, (P2O5)50(Na2O)20(CaO)30-x(CoO)x where 0 ≤ x (mol%) ≤ 10, were manufactured and characterised. As the cobalt oxide concentration increased the rate of dissolution was observed to decrease. The antimicrobial potential of the glasses was studied using direct and indirect contact methods against both Escherichia coli (NCTC 10538) Staphylococcus aureus (ATCC 6538) and Candida albicans (ATCC 76615). The results showed a strong, time dependent and strain specific, antimicrobial activity of the glasses against microorganisms when in direct contact. Antimicrobial activity (R) ≥ 2 was observed within 2 hours against Escherichia coli whereas similar effect was achieved in 6 hours against Staphylococcus aureus and Candida albicans. However, when in indirect contact, the dissolution products from the bioactive glasses failed to show antimicrobial effect. Following direct exposure to the glasses for 7 days, osteoblast-like SAOS-2 cells showed a 5-fold increase in VEGF mRNA whilst THP-1 monocytic cells showed a 4-fold increase in VEGF mRNA expression when exposed to 10% CoO doped glass compared with the cobalt free control glass. Endothelial cells stimulated with conditioned medium taken from cell cultures of THP-1 monocytes exposed to 10% CoO doped glass showed clear tube–like structure (blood vessel) formation after 4 hours
|
Nov 2018
|
|
I18-Microfocus Spectroscopy
|
Alexander
Morrell
,
J. Frederick W.
Mosselmans
,
Kalotina
Geraki
,
Konstantin
Ignatyev
,
Hiram
Castillo-Michel
,
Peter
Monksfield
,
Adrian T.
Warfield
,
Maria
Febbraio
,
Helen M.
Roberts
,
Owen
Addison
,
Richard A.
Martin
Diamond Proposal Number(s):
[16458]
Abstract: Synchrotron radiation X-ray fluorescence microscopy is frequently used to investigate the spatial distribution of elements within a wide range of samples. Interrogation of heterogeneous samples that contain large concentration ranges has the potential to produce image artefacts due to the profile of the X-ray beam. The presence of these artefacts and the distribution of flux within the beam profile can significantly affect qualitative and quantitative analyses. Two distinct correction methods have been generated by referencing the beam profile itself or by employing an adaptive-thresholding procedure. Both methods significantly improve qualitative imaging by removing the artefacts without compromising the low-intensity features. The beam-profile correction method improves quantitative results but requires accurate two-dimensional characterization of the X-ray beam profile.
|
Nov 2018
|
|
I18-Microfocus Spectroscopy
|
Petre Flaviu
Gostin
,
Owen
Addison
,
Alexander P.
Morrell
,
Yue
Zhang
,
Angus J. M. C.
Cook
,
Alethea
Liens
,
Mihai
Stoica
,
Konstantin
Ignatyev
,
Steven R.
Street
,
Jing
Wu
,
Yu-Lung
Chiu
,
Alison
Davenport
Diamond Proposal Number(s):
[13963]
Abstract: Ti‐based bulk metallic glasses are under consideration for implants due to their high yield strength and biocompatibility. In this work, in situ synchrotron X‐ray diffraction (XRD) is used to investigate the corrosion products formed from corrosion of Ti40Zr10Cu34Pd14Sn2 bulk metallic glass in artificial corrosion pits in physiological saline (NaCl). It is found that Pd nanoparticles form in the interior of the pits during electrochemical dissolution. At a low pit growth potential, the change in lattice parameter of the Pd nanoparticles is consistent with the formation of palladium hydride. In addition, a salt layer very close to the dissolving interface is found to contain CuCl, PdCl2, ZrOCl2∙8H2O, Cu, Cu2O, and several unidentified phases. The formation of Pd nanoparticles (16 ± 10 nm at 0.7 V vs Ag/AgCl) containing small amounts of the other alloying elements is confirmed by transmission electron microscopy. The addition of albumin and/or H2O2 does not significantly influence the nature of the corrosion products. When considering the biological compatibility of the alloy, the biological reactivity of the corrosion products identified should be explored.
|
Sep 2018
|
|
B16-Test Beamline
|
Diamond Proposal Number(s):
[4016]
Abstract: Objectives: To measure the spatial distribution of crystallographic strain in tooth enamel induced by the photo-polymerisation of a dimethacrylate resin based composite cavity restoration. Methods: Six sound first premolar teeth, allocated into two groups (n = 3), were prepared with mesio-occlusal distal cavities. The enamel was machined at the point of maximum convexity on the outer tooth to create a vertical fin of thickness 100 μm and 0.5 mm depth to allow for synchrotron X-ray diffraction measurements. 2D diffraction patterns were used to determine crystallite orientation and quantify changes in the hydroxyapatite crystal lattice parameters, before and after photo-polymerisation of a composite material placed in the cavity, to calculate strain in the respective axis. The composite was photo-polymerised with either relatively high (1200 mW cm−2, group 1) or low (480 mW cm−2, group 2) irradiances using LED or quartz halogen light sources, respectively. A paired t-test was used to determine significant differences in strain between irradiance protocols at ɑ = 0.001. Results: Photo-polymerisation of the composite in the adjacent cavity induced significant changes in both the crystallographic c and a axes of the enamel measurement area. However the magnitude of strain was low with ∼0.1% difference before and after composite photo-polymerisation. Strain in enamel was not uniformly distributed and varied spatially as a function of crystallite orientation. Increased alignment of crystallites perpendicular to the cavity wall was associated with higher c axis strain. Additionally, strain was significantly greater in the c (p < 0.001) and a axis (p < 0.001) when using a high irradiance photo-polymerisation protocol. Significance: Although cuspal deflection is routinely measured to indirectly assess the ‘global’ effect of composite shrinkage on the tooth-restoration complex, here we show that absolute strains generated in enamel are low, indicating strain relief mechanisms may be operative. The use of low irradiance protocols for photo-polymerisation resulted in reduced strain.
|
Aug 2018
|
|