I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Diamond Proposal Number(s):
[24593]
Open Access
Abstract: The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin S ≥ 1. Unfortunately, since most experimental probes are governed by dipolar selection rules, collective multipolar excitations have generally remained elusive. For instance, only dipolar magnetic excitations have been observed in isotropic S = 1 Haldane spin systems. Here, we unveil a hidden quadrupolar constituent of the spin dynamics in antiferromagnetic S = 1 Haldane chain material Y2BaNiO5 using Ni L3-edge resonant inelastic x-ray scattering. Our results demonstrate that pure quadrupolar magnetic excitations can be probed without direct interactions with dipolar excitations or anisotropic perturbations. Originating from on-site double spin-flip processes, the quadrupolar magnetic excitations in Y2BaNiO5 show a remarkable dual nature of collective dispersion. While one component propagates as non-interacting entities, the other behaves as a bound quadrupolar magnetic wave. This result highlights the rich and largely unexplored physics of higher-order magnetic excitations.
|
Apr 2022
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Ke-Jin
Zhou
,
Andrew
Walters
,
Mirian
Garcia-Fernandez
,
Thomas
Rice
,
Matthew
Hand
,
Abhishek
Nag
,
Jiemin
Li
,
Stefano
Agrestini
,
Peter
Garland
,
Hongchang
Wang
,
Simon
Alcock
,
Ioana
Nistea
,
Brian
Nutter
,
Nicholas
Rubies
,
Giles
Knap
,
Martin
Gaughran
,
Fajin
Yuan
,
Peter
Chang
,
John
Emmins
,
George
Howell
Open Access
Abstract: The I21 beamline at Diamond Light Source is dedicated to advanced resonant inelastic X-ray scattering (RIXS) for probing charge, orbital, spin and lattice excitations in materials across condensed matter physics, applied sciences and chemistry. Both the beamline and the RIXS spectrometer employ divergent variable-line-spacing gratings covering a broad energy range of 280–3000 eV. A combined energy resolution of ∼35 meV (16 meV) is readily achieved at 930 eV (530 eV) owing to the optimized optics and the mechanics. Considerable efforts have been paid to the design of the entire beamline, particularly the implementation of the collection mirrors, to maximize the X-ray photon throughput. The continuous rotation of the spectrometer over 150° under ultra high vacuum and a cryogenic manipulator with six degrees of freedom allow accurate mappings of low-energy excitations from solid state materials in momentum space. Most importantly, the facility features a unique combination of the high energy resolution and the high photon throughput vital for advanced RIXS applications. Together with its stability and user friendliness, I21 has become one of the most sought after RIXS beamlines in the world.
|
Mar 2022
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
M.
Rossi
,
H.
Lu
,
A.
Nag
,
D.
Li
,
M.
Osada
,
K.
Lee
,
B. Y.
Wang
,
S.
Agrestini
,
Mirian
Garcia-Fernandez
,
J. J.
Kas
,
Y.-D.
Chuang
,
Z. X.
Shen
,
H. Y.
Hwang
,
B.
Moritz
,
Ke-Jin
Zhou
,
T. P.
Devereaux
,
W. S.
Lee
Diamond Proposal Number(s):
[25165]
Abstract: The recent discovery of superconductivity in Nd1−xSrxNiO2 has drawn significant attention in the field. A key open question regards the evolution of the electronic structure with respect to hole doping. Here we exploit x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) to probe the doping-dependent electronic structure of Nd1−xSrxNiO. Upon doping, a high-energy feature in Ni L3-edge XAS develops in addition to the main absorption peak, while XAS at the O K-, Nd M3- and Nd M5-edge exhibits a much weaker response. This implies that doped holes are mainly introduced into Ni 3 d states. By comparing our data to atomic multiplet calculations including D4h crystal field, the doping-induced feature in Ni L3-edge XAS is consistent with a d 8 spin-singlet state in which doped holes reside in the 3dx2−y2 orbitals. This is further supported by the softening of RIXS orbital excitations due to doping, corroborating with the Fermi level shift associated with increasing holes in the Ni 3dx2−y2 orbital.
|
Dec 2021
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
C. D.
Dashwood
,
A.
Geondzhian
,
J. G.
Vale
,
A. C.
Pakpour-Tabrizi
,
C. A.
Howard
,
Q.
Faure
,
L. S. I.
Veiga
,
D.
Meyers
,
G. S.
Chiuzbaian
,
A.
Nicolaou
,
N.
Jaouen
,
R. B.
Jackman
,
A.
Nag
,
M.
Garcia-Fernandez
,
Ke-Jin
Zhou
,
A. C.
Walters
,
K.
Gilmore
,
D. F.
Mcmorrow
,
M. P. M.
Dean
Diamond Proposal Number(s):
[22695]
Open Access
Abstract: Interactions between electrons and lattice vibrations are responsible for a wide range of material properties and applications. Recently, there has been considerable interest in the development of resonant inelastic x-ray scattering (RIXS) as a tool for measuring electron-phonon (
e
-ph) interactions. Here, we demonstrate the ability of RIXS to probe the interaction between phonons and specific electronic states both near to, and away from, the Fermi level. We perform carbon
K
-edge RIXS measurements on graphite, tuning the incident x-ray energy to separately probe the interactions of the
π
∗
and
σ
∗
electronic states. Our high-resolution data reveal detailed structure in the multiphonon RIXS features that directly encodes the momentum dependence of the
e
-ph interaction strength. We develop a Green’s-function method to model this structure, which naturally accounts for the phonon and interaction-strength dispersions, as well as the mixing of phonon momenta in the intermediate state. This model shows that the differences between the spectra can be fully explained by contrasting trends of the
e
-ph interaction through the Brillouin zone, being concentrated at the
Γ
and
K
points for the
π
∗
states while being significant at all momenta for the
σ
∗
states. Our results advance the interpretation of phonon excitations in RIXS and extend its applicability as a probe of
e
-ph interactions to a new range of out-of-equilibrium situations.
|
Dec 2021
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
H.
Lu
,
M.
Rossi
,
A.
Nag
,
M.
Osada
,
D. F.
Li
,
K.
Lee
,
B. Y.
Wang
,
M.
Garcia-Fernandez
,
S.
Agrestini
,
Z. X.
Shen
,
E. M.
Been
,
B.
Moritz
,
T. P.
Devereaux
,
J.
Zaanen
,
H. Y.
Hwang
,
K.-J.
Zhou
,
W.-S.
Lee
Diamond Proposal Number(s):
[25165]
Abstract: The discovery of superconductivity in infinite-layer nickelates brings us tantalizingly close to a material class that mirrors the cuprate superconductors. We measured the magnetic excitations in these nickelates using resonant inelastic x-ray scattering at the Ni L3-edge. Undoped NdNiO2 possesses a branch of dispersive excitations with a bandwidth of approximately 200 milli–electron volts, which is reminiscent of the spin wave of strongly coupled, antiferromagnetically aligned spins on a square lattice. The substantial damping of these modes indicates the importance of coupling to rare-earth itinerant electrons. Upon doping, the spectral weight and energy decrease slightly, whereas the modes become overdamped. Our results highlight the role of Mottness in infinite-layer nickelates.
|
Jul 2021
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Diamond Proposal Number(s):
[18469]
Open Access
Abstract: Resonant inelastic x-ray scattering (RIXS) is a powerful probe of elementary excitations in solids. It is now widely applied to study magnetic excitations. However, its complex cross section means that RIXS has been more difficult to interpret than inelastic neutron scattering (INS). Here we report
∼
37
meV resolution RIXS measurements of the magnetic excitations in
La
2
CuO
4
, the antiferromagnetic parent of one system of high-temperature superconductors. At high energies (
∼
2
eV), the RIXS spectra show angular-dependent
d
d
orbital excitations in agreement with previous RIXS studies but show new structure. They are interpreted with single-site multiplet calculations. At low energies (
≲
0.3
eV), we model the wave-vector-dependent single magnon RIXS intensity as the product of the calculated single-ion spin-flip RIXS cross section and the dynamical structure factor
S
(
Q
,
ω
)
of the spin-wave excitations. When
S
(
Q
,
ω
)
is extracted from our data, the wave-vector-dependence of the single-magnon pole intensity shows a similar variation to that observed by INS. Our results confirm that suitably corrected RIXS data can yield the genuine wave-vector and energy dependence of
S
(
Q
,
ω
)
for a cuprate antiferromagnet. In addition to spin waves, our data show structured multimagnon excitations with dispersing peaks in the intensity at energies higher than the single-magnon excitations.
|
Jun 2021
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Haiyu
Lu
,
Matteo
Rossi
,
Jung-Ho
Kim
,
Hasan
Yavas
,
Ayman
Said
,
Abhishek
Nag
,
Mirian
Garcia-Fernandez
,
Stefano
Agrestini
,
Ke-Jin
Zhou
,
Chunjing
Jia
,
Brian
Moritz
,
Thomas P.
Devereaux
,
Zhi-Xun
Shen
,
Wei-Sheng
Lee
Diamond Proposal Number(s):
[25165]
Abstract: We utilized high-energy-resolution resonant inelastic x-ray scattering (RIXS) at both the Ta and Ni
L
3
edges to map out element-specific particle-hole excitations in
Ta
2
Ni
Se
5
across the phase transition. Our results reveal a momentum-dependent gaplike feature in the low-energy spectrum, which agrees well with the band gap in element-specific joint density of states calculations based on ab initio estimates of the electronic structure in both the low-temperature monoclinic and high-temperature orthorhombic structures. Below
T
c
, the RIXS energy-momentum map shows a minimal gap at the Brillouin zone center
(
∼
0.16
eV
)
, confirming that
Ta
2
Ni
Se
5
possesses a direct band gap in its low-temperature ground state. However, inside the gap, no signature of anticipated collective modes with an energy scale comparable to the gap size can be identified. Upon increasing the temperature to above
T
c
, whereas the gap at the zone center closes, the RIXS map at finite momenta still possesses the gross features of the low-temperature map, suggesting a substantial mixing between the Ta and Ni orbits in the conduction and valence bands, which does not change substantially across the phase transition. Our experimental observations and comparison to the theoretical calculations lend further support to the phase transition and the corresponding gap opening in
Ta
2
Ni
Se
5
being largely structural by nature, with a possible minor contribution from the putative exciton condensate.
|
Jun 2021
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Qisi
Wang
,
Karin
Von Arx
,
Masafumi
Horio
,
Deepak John
Mukkattukavil
,
Julia
Kuespert
,
Yasmine
Sassa
,
Thorsten
Schmitt
,
Abhishek
Nag
,
Sunseng
Pyon
,
Tomohiro
Takayama
,
Hidenori
Takagi
,
Mirian
Garcia-Fernandez
,
Ke-Jin
Zhou
,
Johan
Chang
Diamond Proposal Number(s):
[24481]
Open Access
Abstract: Charge order is universal to all hole-doped cuprates. Yet, the driving interactions remain an unsolved problem. Electron-electron interaction is widely believed to be essential, whereas the role of electron-phonon interaction is unclear. We report an ultrahigh-resolution resonant inelastic x-ray scattering (RIXS) study of the in-plane bond-stretching phonon mode in stripe-ordered cuprate La1.675Eu0.2Sr0.125CuO4. Phonon softening and lifetime shortening are found around the charge ordering wave vector. In addition to these self-energy effects, the electron-phonon coupling is probed by its proportionality to the RIXS cross section. We find an enhancement of the electron-phonon coupling around the charge-stripe ordering wave vector upon cooling into the low-temperature tetragonal structure phase. These results suggest that, in addition to electronic correlations, electron-phonon coupling contributes substantially to the emergence of long-range charge-stripe order in cuprates.
|
Jun 2021
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Jonathan
Pelliciari
,
Seher
Karakuzu
,
Qi
Song
,
Riccardo
Arpaia
,
Abhishek
Nag
,
Matteo
Rossi
,
Jiemin
Li
,
Tianlun
Yu
,
Xiaoyang
Chen
,
Rui
Peng
,
Mirian
Garcia-Fernandez
,
Andrew C.
Walters
,
Qisi
Wang
,
Jun
Zhao
,
Giacomo
Ghiringhelli
,
Donglai
Feng
,
Thomas A.
Maier
,
Ke-Jin
Zhou
,
Steven
Johnston
,
Riccardo
Comin
Diamond Proposal Number(s):
[18883]
Open Access
Abstract: In ultrathin films of FeSe grown on SrTiO3 (FeSe/STO), the superconducting transition temperature Tc is increased by almost an order of magnitude, raising questions on the pairing mechanism. As in other superconductors, antiferromagnetic spin fluctuations have been proposed to mediate SC making it essential to study the evolution of the spin dynamics of FeSe from the bulk to the ultrathin limit. Here, we investigate the spin excitations in bulk and monolayer FeSe/STO using resonant inelastic x-ray scattering (RIXS) and quantum Monte Carlo (QMC) calculations. Despite the absence of long-range magnetic order, bulk FeSe displays dispersive magnetic excitations reminiscent of other Fe-pnictides. Conversely, the spin excitations in FeSe/STO are gapped, dispersionless, and significantly hardened relative to its bulk counterpart. By comparing our RIXS results with simulations of a bilayer Hubbard model, we connect the evolution of the spin excitations to the Fermiology of the two systems revealing a remarkable reconfiguration of spin excitations in FeSe/STO, essential to understand the role of spin fluctuations in the pairing mechanism.
|
May 2021
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Diamond Proposal Number(s):
[25589]
Open Access
Abstract: Layered Li-rich transition metal oxides undergo O-redox, involving the oxidation of the O2− ions charge compensated by extraction of Li+ ions. Recent results have shown that for 3d transition metal oxides the oxidized O2− forms molecular O2 trapped in the bulk particles. Other forms of oxidised O2− such as O22− or (O–O)n− with long bonds have been proposed, based especially on work on 4 and 5d transition metal oxides, where TM–O bonding is more covalent. Here, we show, using high resolution RIXS that molecular O2 is formed in the bulk particles on O2‒ oxidation in the archetypal Li-rich ruthenates and iridate compounds, Li2RuO3, Li2Ru0.5Sn0.5O3 and Li2Ir0.5Sn0.5O3. The results indicate that O-redox occurs across 3, 4, and 5d transition metal oxides, forming O2, i.e. the greater covalency of the 4d and 5d compounds still favours O2. RIXS and XAS data for Li2IrO3 are consistent with a charge compensation mechanism associated primarily with Ir redox up to and beyond the 5+ oxidation state, with no evidence of O–O dimerization.
|
May 2021
|
|