B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Yu
Han
,
Wenyuan
Huang
,
Meng
He
,
Bing
An
,
Yinlin
Chen
,
Xue
Han
,
Lan
An
,
Meredydd
Kippax-Jones
,
Jiangnan
Li
,
Yuhang
Yang
,
Mark D.
Frogley
,
Cheng
Li
,
Danielle
Crawshaw
,
Pascal
Manuel
,
Svemir
Rudic
,
Yongqiang
Chen
,
Ian
Silverwood
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuesta
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Ben F.
Spencer
,
Marek
Nikiel
,
Daniel
Lee
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[37155, 36474]
Open Access
Abstract: Capture of trace benzene is an important and challenging task. Metal–organic framework materials are promising sorbents for a variety of gases, but their limited capacity towards benzene at low concentration remains unresolved. Here we report the adsorption of trace benzene by decorating a structural defect in MIL-125-defect with single-atom metal centres to afford MIL-125-X (X = Mn, Fe, Co, Ni, Cu, Zn; MIL-125, Ti8O8(OH)4(BDC)6 where H2BDC is 1,4-benzenedicarboxylic acid). At 298 K, MIL-125-Zn exhibits a benzene uptake of 7.63 mmol g−1 at 1.2 mbar and 5.33 mmol g−1 at 0.12 mbar, and breakthrough experiments confirm the removal of trace benzene (from 5 to <0.5 ppm) from air (up to 111,000 min g−1 of metal–organic framework), even after exposure to moisture. The binding of benzene to the defect and open Zn(II) sites at low pressure has been visualized by diffraction, scattering and spectroscopy. This work highlights the importance of fine-tuning pore chemistry for designing adsorbents for the removal of air pollutants.
|
Nov 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Jin
Chen
,
Qingqing
Mei
,
Yinlin
Chen
,
Christopher
Marsh
,
Bing
An
,
Xue
Han
,
Ian P.
Silverwood
,
Ming
Li
,
Yongqiang
Cheng
,
Meng
He
,
Xi
Chen
,
Weiyao
Li
,
Meredydd
Kippax-Jones
,
Danielle
Crawshaw
,
Mark D.
Frogley
,
Sarah J.
Day
,
Victoria
García-Sakai
,
Pascal
Manuel
,
Anibal J.
Ramirez-Cuesta
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[29649]
Open Access
Abstract: The development of materials showing rapid proton conduction with a low activation energy and stable performance over a wide temperature range is an important and challenging line of research. Here, we report confinement of sulfuric acid within porous MFM-300(Cr) to give MFM-300(Cr)·SO4(H3O)2, which exhibits a record-low activation energy of 0.04 eV, resulting in stable proton conductivity between 25 and 80 °C of >10–2 S cm–1. In situ synchrotron X-ray powder diffraction (SXPD), neutron powder diffraction (NPD), quasielastic neutron scattering (QENS), and molecular dynamics (MD) simulation reveal the pathways of proton transport and the molecular mechanism of proton diffusion within the pores. Confined sulfuric acid species together with adsorbed water molecules play a critical role in promoting the proton transfer through this robust network to afford a material in which proton conductivity is almost temperature-independent.
|
Jul 2022
|
|
B18-Core EXAFS
|
Santhosh K.
Matam
,
Caitlin
Moffat
,
Pip
Hellier
,
Michael
Bowker
,
Ian P.
Silverwood
,
C. Richard A.
Catlow
,
S. David
Jackson
,
James
Craswell
,
Peter P.
Wells
,
Stewart F.
Parker
,
Emma K.
Gibson
Diamond Proposal Number(s):
[10306]
Open Access
Abstract: A MoOx/Al2O3 catalyst was synthesised and tested for oxidative (ODP) and non-oxidative (DP) dehydrogenation of propane in a reaction cycle of ODP followed by DP and a second ODP run. Characterisation results show that the fresh catalyst contains highly dispersed Mo oxide species in the +6 oxidation state with tetrahedral coordination as [MoVIO4]2− moieties. In situ X-ray Absorption Spectroscopy (XAS) shows that [MoVIO4]2− is present during the first ODP run of the reaction cycle and is reduced to MoIVO2 in the following DP run. The reduced species are partly re-oxidised in the subsequent second ODP run of the reaction cycle. The partly re-oxidised species exhibit oxidation and coordination states that are lower than 6 but higher than 4 and are referred to as MoxOy. These species significantly improved propene formation (relatively 27% higher) in the second ODP run at similar propane conversion activity. Accordingly, the initial tetrahedral [MoVIO4]2− present during the first ODP run of the reaction cycle is active for propane conversion; however, it is unselective for propene. The reduced MoIVO2 species are relatively less active and selective for DP. It is suggested that the MoxOy species generated by the reaction cycle are active and selective for ODP. The vibrational spectroscopic data indicate that the retained surface species are amorphous carbon deposits with a higher proportion of aromatic/olefinic like species.
|
Nov 2020
|
|
B18-Core EXAFS
|
B.
Venezia
,
E.
Cao
,
Santhosh K.
Matam
,
C.
Waldron
,
G.
Cibin
,
E. K.
Gibson
,
S.
Golunski
,
P. P.
Wells
,
I.
Silverwood
,
C. R. A.
Catlow
,
G.
Sankar
,
A.
Gavriilidis
Diamond Proposal Number(s):
[19359]
Open Access
Abstract: Operando X-ray absorption spectroscopy (XAS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and mass spectrometry (MS) provide complementary information on the catalyst structure, surface reaction mechanisms and activity relationships. The powerful combination of the techniques has been the driving force to design and engineer suitable spectroscopic operando reactors that can mitigate limitations inherent to conventional reaction cells and facilitate experiments under kinetic regimes. Microreactors have recently emerged as effective spectroscopic operando cells due to their plug-flow type operation with no dead volume and negligible mass and heat transfer resistances. Here we present a novel microfabricated reactor that can be used for both operando XAS and DRIFTS studies. The reactor has a glass–silicon–glass sandwich-like structure with a reaction channel (3000 μm × 600 μm; width × depth) packed with a catalyst bed (ca. 25 mg) and placed sideways to the X-ray beam, while the infrared beam illuminates the catalyst bed from the top. The outlet of the reactor is connected to MS for continuous monitoring of the reactor effluent. The feasibility of the microreactor is demonstrated by conducting two reactions: i) combustion of methane over 2 wt% Pd/Al2O3 studied by operando XAS at the Pd K-edge and ii) CO oxidation over 1 wt% Pt/Al2O3 catalyst studied by operando DRIFTS. The former shows that palladium is in an oxidised state at all studied temperatures, 250, 300, 350, 400 °C and the latter shows the presence of linearly adsorbed CO on the platinum surface. Furthermore, temperature-resolved reduction of palladium catalyst with methane and CO oxidation over platinum catalyst are also studied. Based on these results, the catalyst structure and surface reaction dynamics are discussed, which demonstrate not only the applicability and versatility of the microreactor for combined operando XAS and DRIFTS studies, but also illustrate the unique advantages of the microreactor for high space velocity and transient response experiments.
|
Oct 2020
|
|
B18-Core EXAFS
|
Open Access
Abstract: In the presence of oxygenated organic molecules pure Pd, which is widely used in chemicals processing and the pharmaceutical industry, tends to defunctionalise and dehydrogenate such molecules to H2, CO and surface/bulk carbon, in the form of a palladium carbide. We have investigated the formation of this carbide by ethene adsorption using a variety of techniques, including pulsed flow reaction measurements, XAS and DFT calculations of the lattice expansion during carbidisation. These experiments show that two main reactions take place above 500K, that is, both total dehydrogenation, but also disproportionation to methane and the carbide, after which the activity of the Pd is completely lost. We estimate the value of x in PdCx to be 0.28 (±0.03), and show by computer modelling that this fits the lattice expansion observed by XAFS, and that there is charge transfer to C from Pd of around 0.2‐0.4 e.
|
Jun 2019
|
|
I19-Small Molecule Single Crystal Diffraction
|
Peter
Rought
,
Christopher
Marsh
,
Simona
Pili
,
Ian P.
Silverwood
,
Victoria
Garcia Sakai
,
Ming
Li
,
Martyn
Brown
,
Stephen P.
Argent
,
Inigo
Vitorica-Yrezabal
,
George
Whitehead
,
Mark R.
Warren
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[13650, 12517]
Open Access
Abstract: Three multi-carboxylic acid functionalised ligands have been designed, synthesised and utilised to synthesise the new barium-based MOFs, MFM-510, -511, and -512, which show excellent stability to water-vapour. MFM-510 and MFM-511 show moderate proton conductivities (2.1 x10-5 and 5.1 x10-5 S cm-1, respectively) at 99RH% and 298 K, attributed to the lack of free protons or hindered proton diffusion within the framework structures. In contrast, MFM-512, which incorporates a pendant carboxylic acid group directed into the pore of the framework, shows a two orders of magnitude enhancement in proton conductivity (2.9 x10-3 S cm-1). Quasi-elastic neutron scattering (QENS) suggests that the proton dynamics of MFM-512 are mediated by “free diffusion inside a sphere” confirming that incorporation of free carboxylic acid groups within the pores of MOFs is an efficient albeit a synthetically challenging strategy to improve proton conductivity.
|
Nov 2018
|
|
I11-High Resolution Powder Diffraction
|
Simona
Pili
,
Peter
Rought
,
Daniil I.
Kolokolov
,
Longfei
Lin
,
Ivan
Da Silva
,
Yongqiang
Cheng
,
Christopher
Marsh
,
Ian P.
Silverwood
,
Victoria
García-Sakai
,
Ming
Li
,
Jeremy J.
Titman
,
Lyndsey
Knight
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuesta
,
Chiu C.
Tang
,
Alexander G.
Stepanov
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[13247]
Abstract: Owing to their inherent pore structure, porous metal-organic frameworks (MOFs) can undergo post-synthetic modification, such as loading extra-framework proton carriers. However, strategies for improving the proton conductivity for non-porous MOFs are largely lacking, although increasing numbers of non-porous MOFs exhibit promising proton conductivities. Often, high humidity is required for non-porous MOFs to achieve high conductivities, but to date no clear mechanisms have been experimentally identified. Here we describe the new materials MFM-550(M), [M(HL1)], (H4L1 = biphenyl-4,4'-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), MFM-550(Ba), [Ba(H2L1)], and MFM-555(M), [M(HL2)], (H4L2 = benzene-1,4-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), and report enhanced proton conductivities in these non-porous materials by (i) replacing the metal ion to one with a lower oxidation state, (ii) reducing the length of the organic ligand, and (iii) introducing additional acidic protons on MOF surface. Increased framework proton density in these materials can lead to an enhancement in proton conductivity of up to four orders of magnitude. Additionally, we report a comprehensive investigation using in situ 2H NMR and neutron spectroscopy, coupled with molecular dynamic modelling, to elucidate the role of humidity in assembling interconnected networks for proton hopping. This study constructs a relationship between framework proton density and the corresponding proton conductivity in non-porous MOFs, and directly explains the role of both surface protons and external water in assembling the proton conducting pathways.
|
Sep 2018
|
|
|
Abstract: There is commercial interest in understanding the deactivation of Mo loaded H-ZSM-5 catalyst by coke fouling during the methane dehydroaromatization reaction (MDA). The effect of coke on methane diffusion inside the zeolite pores was studied by quasielastic neutron scattering (QENS) measurements on Mo/H-ZSM-5 samples reacted with methane for 0, 7, 25 and 60 min. Catalytic activity of the samples followed by mass spectrometry indicate that the induction period in which Mo species are carburized lasts for ∼9 min; after this period the material shows selectivity to aromatics. Characterization by TGA and N2 physisorption suggest that practically no carbon is deposited during the induction period. The ∼2 wt % of coke formed after one hour of reaction has a negligible effect in the zeolite crystal structurebut a small effect on the micropore volume. The QENS studies show that the methane transport by jump diffusion is however not measurably affected by the accumulated coke in the samples.
|
May 2018
|
|
|
Open Access
Abstract: We report a density functional theory study on the relative stability of formate species on Cu(h,k,l) low index surfaces using a range of exchange-correlation functionals. We find that these functionals predict similar geometries for the formate molecule adsorbed on the Cu surface. A comparison of the calculated vibrational transition energies of a perpendicular configuration of formate on Cu surface shows an excellent agreement with the experimental spectrum obtained from inelastic neutron spectroscopy. From the calculations on adsorption energy we find that formate is most stable on the Cu(110) surface as compared to Cu(111) and Cu(100) surfaces. Bader analysis shows that this feature could be related to the higher charge transfer from the Cu(110) surface and optimum charge density at the interfacial region due to bidirectional electron transfer between the formate and the Cu surface. Analysis of the partial density of states finds that in the –5.5 eV to –4.0 eV region, hybridization between O p and the non-axial Cu dyz and dxz orbitals takes place on the Cu(110) surface, which is energetically more favourable than on the other surfaces.
|
Nov 2016
|
|
I11-High Resolution Powder Diffraction
I19-Small Molecule Single Crystal Diffraction
|
Simona
Pili
,
Stephen
Argent
,
Christopher
Morris
,
Peter
Rought
,
Victoria
García-Sakai
,
Ian
Silverwood
,
Timothy
Easun
,
Ming
Li
,
Mark
Warren
,
Claire
Murray
,
Chiu
Tang
,
Sihai
Yang
,
Martin
Schroeder
Open Access
Abstract: Understanding the molecular mechanism of proton conduction is crucial for the design of new materials with improved conductivity. Quasi-elastic neutron scattering (QENS) has been used to probe the mechanism of proton diffusion within a new phosphonate-based metal–organic framework (MOF) material, MFM-500(Ni). QENS suggests that the proton conductivity (4.5 × 10–4 S/cm at 98% relative humidity and 25 °C) of MFM-500(Ni) is mediated by intrinsic “free diffusion inside a sphere”, representing the first example of such a mechanism observed in MOFs.
|
May 2016
|
|