I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[36180]
Abstract: The delamination of hydrothermally etched V2CTx has presented challenges, with limited reports of an effective delamination process. X-ray diffraction data indicate that excess lithium and lithium salts in the reaction mixture interact with the multilayered MXene surfaces in the interlayer space, impeding intercalants that would separate the nanosheets. The removal of this salt with a dilute acid solution is the key step to enable the synthesis of a delaminated MXene with a markedly higher yield in comparison to that of traditional HF-etched (and delaminated) V2CTx. Because this yield is substantial, the sample can be centrifuged to produce 20 mL of a concentrated (25 mg mL–1) sample. Due to the removal of excess water and dissolved O2, this concentrated sample shows improved stability toward oxidation and can withstand ambient conditions over the course of a year.
|
Mar 2025
|
|
I09-Surface and Interface Structural Analysis
|
H. J.
Elmers
,
O.
Tkach
,
Y.
Lytvynenko
,
P.
Yogi
,
M.
Schmitt
,
D.
Biswas
,
J.
Liu
,
S. V.
Chernov
,
Quynh
Nguyen
,
M.
Hoesch
,
D.
Kutnyakhov
,
N.
Wind
,
L.
Wenthaus
,
M.
Scholz
,
K.
Rossnagel
,
A.
Gloskovskii
,
C.
Schlueter
,
A.
Winkelmann
,
A. A.
Haghighirad
,
T.-L.
Lee
,
M.
Sing
,
R.
Claessen
,
M.
Le Tacon
,
J.
Demsar
,
G.
Schönhense
,
O.
Fedchenko
Diamond Proposal Number(s):
[33765]
Abstract: Using x-ray photoelectron diffraction (XPD) and angle-resolved photoemission spectroscopy, we study photoemission intensity changes related to changes in the geometric and electronic structure in the kagome metal CsV3Sb5 upon transition to an unconventional charge density wave (CDW) state. The XPD patterns reveal the presence of a chiral atomic structure in the CDW phase. Furthermore, using circularly polarized x-rays, we have found a pronounced nontrivial circular dichroism in the angular distribution of the valence band photoemission in the CDW phase, indicating a chirality of the electronic structure. This observation is consistent with the proposed orbital loop current order. In view of a negligible spontaneous Kerr signal in recent magneto-optical studies, the results suggest an antiferromagnetic coupling of the orbital magnetic moments along the 𝑐 axis. While the inherent structural chirality may also induce circular dichroism, the observed asymmetry values seem to be too large in the case of the weak structural distortions caused by the CDW.
|
Mar 2025
|
|
B07-B1-Versatile Soft X-ray beamline: High Throughput ES1
I09-Surface and Interface Structural Analysis
|
Nickil
Shah
,
Galo J.
Paez Fajardo
,
Hrishit
Banerjee
,
Gaurav C.
Pandey
,
Ashok S.
Menon
,
Muhammad
Ans
,
Veronika
Majherova
,
Gerard
Bree
,
Satish
Bolloju
,
David .
Grinter
,
Pilar
Ferrer
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Melanie
Loveridge
,
Andrew J.
Morris
,
Clare P.
Grey
,
Louis F. J.
Piper
Diamond Proposal Number(s):
[30201, 33459]
Open Access
Abstract: In Ni-rich layered oxide cathodes, cycling above the oxygen-loss threshold voltage (∼4.3 V vs Li+/Li) promotes structural transformations at the cathode surface. These transformations can result in various thermodynamically favorable rocksalt-like (RSL) structures (NiO, NiOx, and/or LiyNizO) that have different Li+ transport properties. Elucidating the precise phase type in the RSL can help determine design strategies to improve Li+ kinetics and identify design rules to suppress capacity fade in Ni-rich cathodes. This study utilizes surface-sensitive X-ray absorption spectroscopy in combination with first-principles simulations and distinguishes the layered oxide spectroscopic features from those of surface-reduced layers of pure NiO and LixNi1–xO. The transport of lithium ions through this oxygen-loss-induced surface-reconstructed layer is studied with operando X-ray diffraction in a pouch cell as a function of cycling aging and constant voltage protocols.
|
Feb 2025
|
|
I09-Surface and Interface Structural Analysis
|
Jieyi
Liu
,
Yiheng
Yang
,
Jianlei
Shen
,
Defa
Liu
,
Gohil Singh
Thakur
,
Charles
Guillemard
,
Alevtina
Smekhova
,
Houke
Chen
,
Deepnarayan
Biswas
,
Manuel
Valvidares
,
Enke
Liu
,
Claudia
Felser
,
Tien-Lin
Lee
,
Thorsten
Hesjedal
,
Yulin
Chen
,
Gerrit
Van Der Laan
Diamond Proposal Number(s):
[37930]
Open Access
Abstract: The physical properties of magnetic topological materials are strongly influenced by their nontrivial band topology coupled with the magnetic structure. Co3Sn2S2 is a ferromagnetic kagome Weyl semimetal displaying giant intrinsic anomalous Hall effect which can be further tuned via elemental doping, such as Ni substitution for Co. Despite significant interest, the exact valency of Co and the magnetic order of the Ni dopants remained unclear. Here, we report a study of Ni-doped Co3Sn2S2 single crystals using synchrotron-based X-ray magnetic circular dichroism (XMCD), X-ray photoelectron emission microscopy (XPEEM), and hard/soft X-ray photoemission spectroscopy (XPS) techniques. We confirm the presence of spin-dominated magnetism from Co in the host material, and also the establishment of ferromagnetic order from the Ni dopant. The oxygen-free photoemission spectrum of the Co 2p core levels in the crystal well resembles that of a metallic Co film, indicating a Co0+ valency. Surprisingly, we find the electron filling in the Co 3d state can reach 8.7–9.0 electrons in these single crystals. Our results highlight the importance of element-specific X-ray spectroscopy in understanding the electronic and magnetic properties that are fundamental to a heavily studied Weyl semimetal, which could aid in developing future spintronic applications based on magnetic topological materials.
|
Feb 2025
|
|
I09-Surface and Interface Structural Analysis
|
Scott A.
Chambers
,
Enrique
Ramerez
,
Deepa
Guragain
,
Joseph H.
Ngai
,
Peter V.
Sushko
,
Krishna P.
Koirala
,
Yingge
Du
,
Niranjan
Govind
,
Mark E.
Bowden
,
Deepnarayan
Biswas
,
Tien-Lin
Lee
,
Conan
Weiland
,
Joseph C.
Woicik
Diamond Proposal Number(s):
[25314]
Abstract: We have investigated the structural and electronic properties of 3 at. % Yb-doped SrTiO3/Si(001) grown by molecular beam epitaxy. Other rare-earth dopants that result in 𝑛-type conductivity typically substitute for Sr at the 𝐴 sites in the 𝐴𝐵O3 perovskite lattice. In contrast, Yb is shown to substitute predominantly for Ti at the perovskite 𝐵 sites based on data from atomically resolved scanning transmission electron microscopy and energy dispersive spectroscopy, as well as extended x-ray absorption fine structure measurements. An atom beam flux (Θ) mismatch was present during film growth because it was assumed that Yb would occupy 𝐴 sites. As a result of this assumption, the fluxes were set such that ΘYb+ΘSr=ΘTi. The formation of YbTi rather than YbSr results in Sr vacancies and extraneous (i.e., nonlattice) Ti atoms in the films. Yb exhibits two distinct charge states as determined by x-ray absorption spectroscopy and associated theoretical modeling, +2.7 and +2.1. These aliovalent dopants are compensated by donor electrons from oxygen vacancies that form during film growth. The defect complexes resulting from the flux mismatch, together with oxygen vacancies, lead to deep-level electron traps that were detected by resonant photoemission and predicted to be stable by ab initio theory, as well as much higher sheet resistance than that associated with, for instance, La-doped SrTiO3 (STO) films. Ab initio calculations show that the preference for 𝐵-site occupancy is driven by low oxygen chemical potential at the growth front as required to deposit STO on Si without SiO2 formation.
|
Jan 2025
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[36180]
Abstract: MAX phases are a large and growing family of transition metal-based ternary carbides and (carbo)nitrides, that have also attracted significant attention as precursors for a class of two-dimensional materials referred to as MXenes. The ability to partially substitute elements on the M-, A-, and X-sites of the layered crystal structure has expanded MAX phases to over 340 members known to date. They can be exfoliated to form single- and few-layer MXene sheets by removal of the A-element while maintaining the M- and X-elements of the precursor MAX phase. MXenes are extremely interesting materials with properties that are, among other factors, dependent on their chemical composition and offer a wide array of potential applications, for example for energy conversion. Here, we synthesize hitherto unknown solid solution MAX phases, (V1–yMoy)2AlC (y = 0.0–0.5) and exfoliate all compounds with varying V/Mo ratios into the respective MXenes by hydrothermal treatment with in situ-formed hydrofluoric acid. The delaminated MXenes can be utilized for electrocatalytic reactions, here demonstrated for the hydrogen evolution reaction (HER). As the Mo content within the MXenes increases, electrocatalytic activity for HER improves, peaking at an overpotential of 394 mV at 10 mA cm–2 and a Tafel slope of 129 mV dec–1 for (V0.5Mo0.5)2CTx.
|
Jan 2025
|
|
I09-Surface and Interface Structural Analysis
|
Dennis
Meier
,
Peter
Knecht
,
Pablo
Vezzoni Vicente
,
Fulden
Eratam
,
Hongxiang
Xu
,
Tien-Lin
Lee
,
Alexander
Generalov
,
Alexander
Riss
,
Biao
Yang
,
Francesco
Allegretti
,
Peter
Feulner
,
Joachim
Reichert
,
Johannes V.
Barth
,
Ari Paavo
Seitsonen
,
David A.
Duncan
,
Anthoula C.
Papageorgiou
Diamond Proposal Number(s):
[30095]
Open Access
Abstract: Metalloporphyrins on interfaces offer a rich playground for functional materials and hence have been subjected to intense scrutiny over the past decades. As the same porphyrin macrocycle on the same surface may exhibit vastly different physicochemical properties depending on the metal center and its substituents, it is vital to have a thorough structural and chemical characterization of such systems. Here, we explore the distinctions arising from coverage and macrocycle substituents on the closely related ruthenium octaethyl porphyrin and ruthenium tetrabenzo porphyrin on Ag(111). Our investigation employs a multitechnique approach in ultrahigh vacuum, combining scanning tunneling microscopy, low-energy electron diffraction, photoelectron spectroscopy, normal incidence X-ray standing wave, and near-edge X-ray absorption fine structure, supported by density functional theory. This methodology allows for a thorough examination of the nuanced differences in the self-assembly, substrate modification, molecular conformation and adsorption height.
|
Dec 2024
|
|
I09-Surface and Interface Structural Analysis
|
Open Access
Abstract: The synthesis of large, freestanding, single-atom-thick two-dimensional (2D) metallic materials remains challenging due to the isotropic nature of metallic bonding. Here, we present a bottom-up approach for fabricating macroscopically large, nearly freestanding 2D gold (Au) monolayers, consisting of nanostructured patches. By forming Au monolayers on an Ir(111) substrate and embedding boron (B) atoms at the Au/Ir interface, we achieve suspended monoatomic Au sheets with hexagonal structures and triangular nanoscale patterns. Alternative patterns of periodic nanodots are observed in Au bilayers on the B/Ir(111) substrate. Using scanning tunneling microscopy, X-ray spectroscopies, and theoretical calculations, we reveal the role of buried B species in forming the nanostructured Au layers. Changes in the Au monolayer’s band structure upon substrate decoupling indicate a transition from 3D to 2D metal bonding. The resulting Au films exhibit remarkable thermal stability, making them practical for studying the catalytic activity of 2D gold.
|
Dec 2024
|
|
Optics
|
Open Access
Abstract: We present here a newly developed software tool (called PGMweb) for computing and simulating the X-ray beam path through a plane grating monochromator (PGM), a key component in soft X-ray beamlines at modern synchrotron and free-electron laser facilities. A historical overview of the development of PGMs is presented, with special attention dedicated to the collimated PGM optical scheme found at several X-ray facilities worldwide. The analytical expressions that fully describe the geometry of a PGM are derived and have been implemented as functions in a Python library (pyplanemono). PGMweb is distributed as a web-based application that can be run in any modern browser without installation, making its use very straightforward for X-ray beamline designers and beamline scientists alike.
|
Dec 2024
|
|
I09-Surface and Interface Structural Analysis
|
Pablo
Vezzoni Vicente
,
Tobias
Weiss
,
Dennis
Meier
,
Wenchao
Zhao
,
Birce Sena
Tömekçe
,
Marc
G. Cuxart
,
Benedikt P.
Klein
,
David A.
Duncan
,
Tien-Lin
Lee
,
Anthoula C.
Papageorgiou
,
Matthias
Muntwiler
,
Ari Paavo
Seitsonen
,
Willi
Auwärter
,
Peter
Feulner
,
Johannes V.
Barth
,
Francesco
Allegretti
Diamond Proposal Number(s):
[25907]
Abstract: In light of the recent research interest in low-dimensional bismuth structures as spin-active materials and topological insulators, we present a comprehensive characterization of the Bi/Au(111) interface. The nuanced evolution of Bi phases upon deposition in ultrahigh vacuum (UHV) on a Au(111) surface is investigated from semidisordered clusters to few-layer Bi(110) thin films. Particular attention is devoted to the high-coverage, submonolayer phases, commonly grouped under the (𝑃×√3) nomenclature. We bring forth a new model, refining the current understanding of the Bi/Au(111) interface and demonstrating the existence of submonolayer moiré superstructures, whose geometry and superperiodicity depend on their coverage. This tuneable periodicity paves the way for their use as tailored buffer and templating layers for epitaxial growth of thin films on Au(111). Finally, we clarify the growth mode of multilayer Bi(110) as bilayer-by-bilayer, allowing precise thickness control of anisotropically strained thin films. This holistic understanding of the structural properties of the material was enabled by the synergy of several experimental techniques, namely low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy and spectroscopy (STM, STS), and x-ray standing waves (XSW), further corroborated by density functional theory (DFT) simulations.
|
Oct 2024
|
|