I09-Surface and Interface Structural Analysis
|
Pablo
Vezzoni Vicente
,
Tobias
Weiss
,
Dennis
Meier
,
Wenchao
Zhao
,
Birce Sena
Tömekçe
,
Marc
G. Cuxart
,
Benedikt P.
Klein
,
David A.
Duncan
,
Tien-Lin
Lee
,
Anthoula C.
Papageorgiou
,
Matthias
Muntwiler
,
Ari Paavo
Seitsonen
,
Willi
Auwärter
,
Peter
Feulner
,
Johannes V.
Barth
,
Francesco
Allegretti
Diamond Proposal Number(s):
[25907]
Abstract: In light of the recent research interest in low-dimensional bismuth structures as spin-active materials and topological insulators, we present a comprehensive characterization of the Bi/Au(111) interface. The nuanced evolution of Bi phases upon deposition in ultrahigh vacuum (UHV) on a Au(111) surface is investigated from semidisordered clusters to few-layer Bi(110) thin films. Particular attention is devoted to the high-coverage, submonolayer phases, commonly grouped under the (𝑃×√3) nomenclature. We bring forth a new model, refining the current understanding of the Bi/Au(111) interface and demonstrating the existence of submonolayer moiré superstructures, whose geometry and superperiodicity depend on their coverage. This tuneable periodicity paves the way for their use as tailored buffer and templating layers for epitaxial growth of thin films on Au(111). Finally, we clarify the growth mode of multilayer Bi(110) as bilayer-by-bilayer, allowing precise thickness control of anisotropically strained thin films. This holistic understanding of the structural properties of the material was enabled by the synergy of several experimental techniques, namely low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy and spectroscopy (STM, STS), and x-ray standing waves (XSW), further corroborated by density functional theory (DFT) simulations.
|
Oct 2024
|
|
I09-Surface and Interface Structural Analysis
|
Aleksandr
Baklanov
,
Johannes T.
Kuchle
,
David A.
Duncan
,
Reinhard J.
Maurer
,
Martin
Schwarz
,
Eduardo Corral
Rascon
,
Ignacio
Piquero-Zulaica
,
Huynh Thien
Ngo
,
Alexander
Riss
,
Francesco
Allegretti
,
Willi
Auwärter
,
Paul T. P.
Ryan
Diamond Proposal Number(s):
[18874, 24276]
Abstract: We present a comprehensive, quantitative multimethod characterization of the geometric and electronic interfacial structure of zinc-porphine (Zn-P) on coinage metal supports, namely, Ag(111) and Cu(111). Complementary techniques including X-ray standing waves, X-ray photoelectron spectroscopy, scanning tunneling microscopy, bond-resolved atomic force microscopy, and density functional theory calculations reveal the molecular conformations, signal a temperature-dependence of element-specific adsorption heights, rule out a decisive role of the d10 nature of the Zn center for the adsorption configuration, and uncover a considerably increased Zn-P adsorption height on Ag(111) compared to Cu(111). Furthermore, a pronounced out-of-plane displacement of the Zn center upon water ligation is demonstrated, a manifestation of the surface trans-effect. This study thus sheds light on effects of temperature, chemical nature of the metal center, its ligation, and the coinage metal support on interfacial structure and molecular deformation of an archetypical surface-anchored metal-tetrapyrrole.
|
Apr 2023
|
|
I09-Surface and Interface Structural Analysis
|
Peter
Knecht
,
Dennis
Meier
,
Joachim
Reichert
,
David A.
Duncan
,
Martin
Schwarz
,
Johannes
Kuchle
,
Tien-Lin
Lee
,
Peter
Deimel
,
Peter
Feulner
,
Francesco
Allegretti
,
Willi
Auwärter
,
Guillaume
Médard
,
Ari P.
Seitsonen
,
Johannes V.
Barth
,
Anthoula
Papageorgiou
Diamond Proposal Number(s):
[17634]
Open Access
Abstract: Ru-porphyrins act as convenient pedestals for the assembly of N-heterocyclic carbenes (NHCs) on solid surfaces. Upon deposition of a simple NHC ligand on a close packed Ru-porphyrin monolayer, an extraordinary phenomenon can be observed: Ru-porphyrin molecules are transferred from the silver surface to the next molecular layer. We have investigated the structural features and dynamics of this portering process and analyzed the associated binding strengths and work function changes. A rearrangement of the molecular layer is induced by the NHC uptake: the NHC selective binding to the Ru atoms causes the ejection of whole porphyrin molecules from the molecular layer on silver to the layer on top. This reorganization can be reversed by thermally induced desorption of the NHC ligand. We anticipate that the understanding of such mass transport processes will have crucial implications for the functionalization of surfaces with carbenes.
|
Oct 2022
|
|
I09-Surface and Interface Structural Analysis
|
Johannes T.
Küchle
,
Aleksandr
Baklanov
,
Ari Paavo
Seitsonen
,
Paul
Ryan
,
Peter
Feulner
,
Prashanth
Pendem
,
Tien-Lin
Lee
,
Matthias
Muntwiler
,
Martin
Schwarz
,
Felix
Haag
,
Johannes V
Barth
,
Willi
Auwärter
,
David A.
Duncan
,
Francesco
Allegretti
Diamond Proposal Number(s):
[15804, 20771]
Open Access
Abstract: Silicene, the two-dimensional (2D) allotrope of silicon, is a promising material for electronics. So far, the most direct synthesis strategy has been to grow it epitaxially on metal surfaces; however, the effect of the strong silicon-metal interaction on the structure and electronic properties of the metal-supported silicene is generally poorly understood. In this work, we consider the 4×4-silicene monolayer grown on Ag(111), probably the most illustrious representative of the 2D silicon family, and show that our experimental results refute the common interpretation of this system as a simple buckled, honeycomb monolayer with a sharp interface to the Ag substrate. Instead, the presented analysis demonstrates the pervasive presence of a second silicon species, which we conclude to be a Si‑Ag alloy stacked between the 2D silicene and the silver substrate and scaffolding the 2D silicene layer. These findings question the current structural understanding of the silicene/Ag(111) interface and may raise expectations of analogous alloy systems in the stabilization of other 2D materials grown epitaxially on metal surfaces.
|
Aug 2022
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[13947]
Open Access
Abstract: The adsorption structure of truxenone on Cu(111) was determined quantitatively using normal-incidence X-ray standing waves. The truxenone molecule was found to chemisorb on the surface, with all adsorption heights of the dominant species on the surface less than ∼2.5 Å. The phenyl backbone of the molecule adsorbs mostly parallel to the underlying surface, with an adsorption height of 2.32 ± 0.08 Å. The C atoms bound to the carbonyl groups are located closer to the surface at 2.15 ± 0.10 Å, a similar adsorption height to that of the chemisorbed O species; however, these O species were found to adsorb at two different adsorption heights, 1.96 ± 0.08 and 2.15 ± 0.06 Å, at a ratio of 1:2, suggesting that on average, one O atom per adsorbed truxenone molecule interacts more strongly with the surface. The adsorption geometry determined herein is an important benchmark for future theoretical calculations concerning both the interaction with solid surfaces and the electronic properties of a molecule with electron-accepting properties for applications in organic electronic devices.
|
Dec 2021
|
|
I09-Surface and Interface Structural Analysis
|
Peter
Knecht
,
Joachim
Reichert
,
Peter S.
Deimel
,
Peter
Feulner
,
Felix
Haag
,
Francesco
Allegretti
,
Manuela
Garnica
,
Martin
Schwarz
,
Willi
Auwärter
,
Paul T. P.
Ryan
,
Tien-Lin
Lee
,
David A.
Duncan
,
Ari Paavo
Seitsonen
,
Johannes V.
Barth
,
Anthoula Chrysa
Papageorgiou
Diamond Proposal Number(s):
[24320]
Open Access
Abstract: We assess the crucial role of tetrapyrrole flexibility in the CO ligation to distinct Ru‐porphyrins supported on an atomistically well‐defined Ag(111) substrate. Our systematic real space visualisation and manipulation experiments with scanning tunnelling microscopy directly probe the ligation, while bond‐resolving atomic force microscopy and X‐ray standing waves measurements characterise the geometry, X‐ray and ultraviolet photoelectron spectroscopy the electronic structure, and temperature programmed desorption the binding strength. Density functional theory calculations provide additional insight into the functional interface. We unambiguously demonstrate that the substituents regulate the interfacial conformational adaptability, either promoting or obstructing the uptake of axial CO adducts.
|
May 2021
|
|
I09-Surface and Interface Structural Analysis
|
Peter
Knecht
,
Bodong
Zhang
,
Joachim
Reichert
,
David A.
Duncan
,
Martin
Schwarz
,
Felix
Haag
,
Paul
Ryan
,
Tien-Lin
Lee
,
Peter S.
Deimel
,
Peter
Feulner
,
Francesco
Allegretti
,
Willi
Auwärter
,
Guillaume
Médard
,
Ari Paavo
Seitsonen
,
Johannes V.
Barth
,
Anthoula C.
Papageorgiou
Diamond Proposal Number(s):
[24320]
Abstract: The controlled arrangement of N-heterocyclic carbenes (NHCs) on solid surfaces is a current challenge of surface functionalization. We introduce a strategy of using Ru porphyrins in order to control both the orientation and lateral arrangement of NHCs on a planar surface. The coupling of the NHC to the Ru porphyrin is a facile process which takes place on the interface: we apply NHCs as functional, robust pillars on well-defined, preassembled Ru porphyrin monolayers on silver and characterize these interfaces with atomic precision via a battery of experimental techniques and theoretical considerations. The NHCs assemble at room temperature modularly and reversibly on the Ru porphyrin arrays. We demonstrate a selective and complete functionalization of the Ru centers. With its binding, the NHC modifies the interaction of the Ru porphyrin with the Ag surface, displacing the Ru atom by 1 Å away from the surface. This arrangement of NHCs allows us to address individual ligands by controlled manipulation with the tip of a scanning tunneling microscope, creating patterned structures on the nanometer scale.
|
Mar 2021
|
|
I09-Surface and Interface Structural Analysis
|
Peter
Knecht
,
Paul T. P.
Ryan
,
David A.
Duncan
,
Li
Jiang
,
Joachim
Reichert
,
Peter S.
Deimel
,
Felix
Haag
,
Johannes T.
Kuchle
,
Francesco
Allegretti
,
Tien-Lin
Lee
,
Martin
Schwarz
,
Manuela
Garnica
,
Willi
Auwärter
,
Ari Paavo
Seitsonen
,
Johannes V.
Barth
,
Anthoula C.
Papageorgiou
Diamond Proposal Number(s):
[24320, 17634]
Abstract: The adsorption and monolayer self-assembly of functional metal–organic blocks on solid surfaces are critical for the physicochemical properties of these low-dimensional materials. Although modern microscopy tools are very sensitive to the lateral arrangement of such blocks, they are still unable to offer directly the complete structural analysis especially for nonplanar molecules containing different atoms. Here, we apply a combinatorial approach for the characterization of such interfaces, which enables unexpected insights. An archetypal metalloporphyrin on a catalytically active surface as a function of its molecular coverage and substituent arrangement is characterized by low-energy electron diffraction, scanning probe microscopy, X-ray photoelectron spectroscopy, normal-incidence X-ray standing waves, and density functional theory. We look into Ru tetraphenyl porphyrin (Ru-TPP) on Ag(111), which is also converted into its planarized derivates via surface-assisted cyclodehydrogenation reactions. Depending on the arrangement of the phenyl substituents, the Ru atoms have distinct electronic structures and the porphyrin macrocycles adapt differently to the surface: saddle shape (pristine Ru-TPP) or bowl shape (planarized Ru-TPP derivates). In all cases, the Ru atom resides close to the surface (2.59/2.45 Å), preferably located at hollow sites and in the interface between the plane of the porphyrin macrocycle and the Ag surface. For the more flexible pristine Ru-TPP, we identify an additional self-assembled structure, allowing the molecular density of the self-assembled monolayer to be tuned within ∼20%. This precise analysis is central to harnessing the potential of metalloporphyrin/metal interfaces in functional systems.
|
Jan 2021
|
|
|
Zishu
Wang
,
Kai
Qian
,
Murat Anil
Öner
,
Peter S.
Deimel
,
Yan
Wang
,
Shuai
Zhang
,
Xiaoxi
Zhang
,
Vishal
Gupta
,
Juan
Li
,
Hong-Jun
Gao
,
David A.
Duncan
,
Johannes V.
Barth
,
Xiao
Lin
,
Francesco
Allegretti
,
Shixuan
Du
,
Carlos-Andres
Palma
Abstract: Precisely layered molecular heterostructures are promising but still largely unexplored materials, with the potential to complement and enhance the scope of two-dimensional heterostructures. The controlled epitaxial growth of vertically stacked molecular layers connected through tailored linkers, can lead to significant development in the field. Here, we demonstrate that sequential assembly of prototypical iron porphyrins and axial ligands can be steered via temperature-programmed desorption, and monitored by mass spectrometry and by high-resolution atomic force microscopy under ultrahigh vacuum conditions. Complementary photoelectron spectroscopy analysis delivers chemical insight into the formation of layer-by-layer nanoarchitectures. Our temperature-directed methodology outlines a promising strategy for the in vacuo fabrication of precisely stacked, multicomponent (metal–organic) molecular heterostructures.
|
Nov 2020
|
|
|
Abstract: By exploiting an established on-surface metallation strategy, we address the ability of the corrolic macrocycle to stabilise transition metal ions in high-valent (III) oxidation states in metal-supported molecular layers. This approach offers a route to engineer adsorbed metal complexes that cannot be easily fabricated by organic synthesis methods and bear a vacant axial coordination site for catalytic conversions.
|
Aug 2020
|
|