I03-Macromolecular Crystallography
|
Arathy
Jose
,
Daniel
Guest
,
Remi
Legay
,
Graham J.
Tizzard
,
Simon
Coles
,
Mariliza
Derveni
,
Edward
Wright
,
Lester
Marrison
,
Alpha A.
Lee
,
Aaron
Morris
,
Matt
Robinson
,
Frank
Von Delft
,
Daren
Fearon
,
Lizbe
Koekemoer
,
Tetiana
Matviuk
,
Anthony
Aimon
,
Christopher J.
Schofield
,
Tika R.
Malla
,
Nir
London
,
Barnaby W.
Greenland
,
Mark C.
Bagley
,
John
Spencer
Diamond Proposal Number(s):
[19301]
Open Access
Abstract: The pentafluorosulfanyl (-SF5) functional group is of increasing interest as a bioisostere in medicinal chemistry. A library of SF5-containing compounds, including amide, isoxazole, and oxindole derivatives, was synthesised using a range of solution-based and solventless methods, including microwave and ball-mill techniques. The library was tested against targets including human dihydroorotate dehydrogenase (HDHODH). A subsequent focused approach led to synthesis of analogues of the clinically used disease modifying anti-rheumatic drugs (DMARDs), Teriflunomide and Leflunomide, considered for potential COVID-19 use, where SF5 bioisostere deployment led to improved inhibition of HDHODH compared with the parent drugs. The results demonstrate the utility of the SF5 group in medicinal chemistry.
|
Feb 2022
|
|
I03-Macromolecular Crystallography
|
John
Spencer
,
Storm
Hassell
,
Sarah
Picaud
,
Ralph
Lengacher
,
Joshua
Csuker
,
Regis
Millet
,
Gilles
Gasser
,
Roger
Alberto
,
Hannah
Maple
,
Robert
Felix
,
Zbigniew
Leśnikowski
,
Helen
Stewart
,
Timothy
Chevassut
,
Simon
Morley
,
Panagis
Filippakopoulos
Diamond Proposal Number(s):
[19301]
Abstract: A series of bulky organometallic and organic analogues of the bromodomain (BRD) inhibitor (+)‐JQ1 have been prepared. The most potent, N‐[(adamantan‐1‐yl)methyl]‐2‐[(9S)‐7‐(4‐chlorophenyl)‐4,5,13‐trimethyl‐3‐thia‐1,8,11,12‐tetraazatricyclo[8.3.0.02,6]trideca‐2(6),4,7,10,12‐pentaen‐9‐yl]acetamide, 2e , showed excellent potency with an K D = ca. 130 nM vs BRD4(1) and a ca. 2‐fold selectivity over BRD4(2) (K D = ca. 260 nM). Its binding to the first bromodomain of BRD4 was determined by a protein cocrystal structure.
|
Jan 2021
|
|
I24-Microfocus Macromolecular Crystallography
|
Angeliki
Ditsiou
,
Chiara
Cilibrasi
,
Nikiana
Simigdala
,
Athanasios
Papakyriakou
,
Leanne
Milton-Harris
,
Viviana
Vella
,
Joanne E.
Nettleship
,
Jae Ho
Lo
,
Shivani
Soni
,
Goar
Smbatyan
,
Panagiota
Ntavelou
,
Teresa
Gagliano
,
Maria Chiara
Iachini
,
Sahir
Khurshid
,
Thomas
Simon
,
Lihong
Zhou
,
Storm
Hassell-Hart
,
Philip
Carter
,
Laurence H.
Pearl
,
Robin L.
Owen
,
Raymond J.
Owens
,
S. Mark
Roe
,
Naomi E.
Chayen
,
Heinz-Josef
Lenz
,
John
Spencer
,
Chrisostomos
Prodromou
,
Apostolos
Klinakis
,
Justin
Stebbing
,
Georgios
Giamas
Diamond Proposal Number(s):
[14493]
Open Access
Abstract: Elucidating signaling driven by lemur tyrosine kinase 3 (LMTK3) could help drug development. Here, we solve the crystal structure of LMTK3 kinase domain to 2.1Å resolution, determine its consensus motif and phosphoproteome, unveiling in vitro and in vivo LMTK3 substrates. Via high-throughput homogeneous time-resolved fluorescence screen coupled with biochemical, cellular, and biophysical assays, we identify a potent LMTK3 small-molecule inhibitor (C28). Functional and mechanistic studies reveal LMTK3 is a heat shock protein 90 (HSP90) client protein, requiring HSP90 for folding and stability, while C28 promotes proteasome-mediated degradation of LMTK3. Pharmacologic inhibition of LMTK3 decreases proliferation of cancer cell lines in the NCI-60 panel, with a concomitant increase in apoptosis in breast cancer cells, recapitulating effects of LMTK3 gene silencing. Furthermore, LMTK3 inhibition reduces growth of xenograft and transgenic breast cancer mouse models without displaying systemic toxicity at effective doses. Our data reinforce LMTK3 as a druggable target for cancer therapy.
|
Nov 2020
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Raysa
Khan Tareque
,
Storm
Hassell-Hart
,
Tobias
Krojer
,
Anthony
Bradley
,
Srikannathasan
Velupillai
,
Romain
Talon
,
Michael
Fairhead
,
Iain J.
Day
,
Kamlesh
Bala
,
Robert
Felix
,
Paul D.
Kemmitt
,
Paul
Brennan
,
Frank
Von Delft
,
Laura
Diaz Saez
,
Kilian
Huber
,
John
Spencer
Diamond Proposal Number(s):
[18145]
Abstract: Combined photochemical arylation, “nuisance effect” (SNAr) reaction sequences have been employed in the design of small arrays for immediate deployment in medium‐throughput X‐ray protein–ligand structure determination. Reactions were deliberately allowed to run “out of control” in terms of selectivity; for example the ortho‐arylation of 2‐phenylpyridine gave five products resulting from mono‐ and bisarylations combined with SNAr processes. As a result, a number of crystallographic hits against NUDT7, a key peroxisomal CoA ester hydrolase, have been identified.
|
Aug 2020
|
|
I03-Macromolecular Crystallography
|
Open Access
Abstract: We have previously shown that the thermolabile, cavity-creating p53 cancer mutant Y220C can be reactivated by small-molecule stabilizers. In our ongoing efforts to unearth druggable variants of the p53 mutome, we have now analyzed the effects of other cancer-associated mutations at codon 220 on the structure, stability and dynamics of the p53 DNA-binding domain (DBD). We found that the oncogenic Y220H, Y220N and Y220S mutations are also highly destabilizing, suggesting that they are largely unfolded under physiological conditions. A high-resolution crystal structure of the Y220S mutant DBD revealed a mutation-induced surface crevice similar to that of Y220C, whereas the corresponding pocket’s accessibility to small molecules was blocked in the structure of the Y220H mutant. Accordingly, a series of carbazole-based small molecules, designed for stabilizing the Y220C mutant, also bound to and stabilized the folded state of the Y220S mutant, albeit with varying affinities due to structural differences in the binding pocket of the two mutants. Some of the compounds also bound to and stabilized the Y220N mutant, but not the Y220H mutant. Our data validate the Y220S and Y220N mutant as druggable targets and provide a framework for the design of Y220S or Y220N-specific compounds as well as compounds with dual Y220C/Y220S specificity for use in personalized cancer therapy.
|
Jan 2020
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Storm
Hassell-Hart
,
Andrew
Runcie
,
Tobias
Krojer
,
Jordan
Doyle
,
Ella
Lineham
,
Cory A.
Ocasio
,
Brenno A. D.
Neto
,
Oleg
Fedorov
,
Graham
Marsh
,
Hannah
Maple
,
Robert
Felix
,
Rebecca
Banks
,
Alessio
Ciulli
,
Sarah
Picaud
,
Panagis
Filippakopoulos
,
Frank
Von Delft
,
Paul
Brennan
,
Helen J. S.
Stewart
,
Timothy J.
Chevassut
,
Martin
Walker
,
Carol
Austin
,
Simon
Morley
,
John
Spencer
Diamond Proposal Number(s):
[19301]
Abstract: (+)-JD1, a rationally designed ferrocene analogue of the BET bromodomain (BRD) probe molecule (+)-JQ1, has been synthesized and evaluated in biophysical, cell-based assays as well as in pharmacokinetic studies. It displays nanomolar activity against BRD isoforms, and its cocrystal structure was determined in complex with the first bromodomain of BRD4 and compared with that of (+)-JQ1, a known BRD4 small-molecule probe. At 1 μM concentration, (+)-JD1 was able to inhibit c-Myc, a key driver in cancer and an indirect target of BRD4.
|
Dec 2019
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[11235, 15916]
Open Access
Abstract: Aim: The p53 cancer mutation Y220C creates a conformationally unstable protein with a unique elongated surface crevice that can be targeted by molecular chaperones. We report the structure-guided optimization of the carbazole-based stabilizer PK083. Materials & methods: Biophysical, cellular and x-ray crystallographic techniques have been employed to elucidate the mode of action of the carbazole scaffolds. Results: Targeting an unoccupied subsite of the surface crevice with heterocycle-substituted PK083 analogs resulted in a 70-fold affinity increase to single-digit micromolar levels, increased thermal stability and decreased rate of aggregation of the mutant protein. PK9318, one of the most potent binders, restored p53 signaling in the liver cancer cell line HUH-7 with homozygous Y220C mutation. Conclusion: The p53-Y220C mutant is an excellent paradigm for the development of mutant p53 rescue drugs via protein stabilization. Similar rescue strategies may be applicable to other cavity-creating p53 cancer mutations.
|
Oct 2019
|
|
I04-Macromolecular Crystallography
|
Abstract: Analog-sensitive (AS) kinases contain large to small mutations in the gatekeeper position rendering them susceptible to inhibition with bulky analogs of pyrazolopyrimidine-based Src kinase inhibitors (e.g. PP1). This ‘bump-hole’ method has been utilized for at least 85 of ~520 kinases, but many kinases are intolerant to this approach. To expand the scope of AS-kinase technology, we designed type II kinase inhibitors, ASDO2/6 (Analog-Sensitive ‘DFG-Out’ kinase inhibitors-2/6), that target the ‘DFG-out’ conformation of cysteine (Cys)-gatekeeper kinases with submicromolar potency. We validated this system in vitro against Greatwall kinase (GWL), Aurora-A kinase and Cyclin-dependent kinase-1 and in cells using M110C-GWL expressing mouse embryonic fibroblasts. These Cys-gatekeeper kinases were sensitive to ASDO2/6-inhibition, but not AS-kinase inhibitor 3MB-PP1 and vice versa. These compounds, with AS-kinase inhibitors, have the potential to inhibit multiple AS-kinases independently with applications in systems level and translational kinase research as well as the rational design of type II kinase inhibitors targeting endogenous kinases.
|
Sep 2018
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Open Access
Abstract: Many oncogenic mutants of the tumor suppressor p53 are conformationally unstable, including the frequently occurring Y220C mutant. We have previously developed several small-molecule stabilizers of this mutant. One of these molecules, PhiKan083, 1-(9-ethyl-9H-carbazole-3-yl)-N-methylmethanamine, binds to a mutation-induced surface crevice with a KD = 150 μM, thereby increasing the melting temperature of the protein and slowing its rate of aggregation. Incorporation of fluorine atoms into small molecule ligands can substantially improve binding affinity to their protein targets. We have, therefore, harnessed fluorine–protein interactions to improve the affinity of this ligand. Step-wise introduction of fluorines at the carbazole ethyl anchor, which is deeply buried within the binding site in the Y220C–PhiKan083 complex, led to a 5-fold increase in affinity for a 2,2,2-trifluoroethyl anchor (ligand efficiency of 0.3 kcal mol–1 atom–1). High-resolution crystal structures of the Y220C–ligand complexes combined with quantum chemical calculations revealed favorable interactions of the fluorines with protein backbone carbonyl groups (Leu145 and Trp146) and the sulfur of Cys220 at the mutation site. Affinity gains were, however, only achieved upon trifluorination, despite favorable interactions of the mono- and difluorinated anchors with the binding pocket, indicating a trade-off between energetically favorable protein–fluorine interactions and increased desolvation penalties. Taken together, the optimized carbazole scaffold provides a promising starting point for the development of high-affinity ligands to reactivate the tumor suppressor function of the p53 mutant Y220C in cancer cells.
|
Jun 2016
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Open Access
Abstract: The destabilizing p53 cancer mutation Y220C creates an extended crevice on the surface of the protein that can be targeted by small-molecule stabilizers. Here, we identify different classes of small molecules that bind to this crevice and determine their binding modes by X-ray crystallography. These structures reveal two major conformational states of the pocket and a cryptic, transiently open hydrophobic subpocket that is modulated by Cys220. In one instance, specifically targeting this transient protein state by a pyrrole moiety resulted in a 40-fold increase in binding affinity. Molecular dynamics simulations showed that both open and closed states of this subsite were populated at comparable frequencies along the trajectories. Our data extend the framework for the design of high-affinity Y220C mutant binders for use in personalized anticancer therapy and, more generally, highlight the importance of implementing protein dynamics and hydration patterns in the drug-discovery process.
|
Dec 2015
|
|