B22-Multimode InfraRed imaging And Microspectroscopy
Optics
|
Open Access
Abstract: Vibrational microspectroscopy via Fourier transform infrared (FTIR) faces an experimental trade-off among the signal to noise ratio (SNR), acquisition time, spatial resolution, and sample coverage. This is mainly associated with broadband source type: e.g. low brightness thermal sources with high flux for large field of view imaging at low resolution, or low ´etendue of synchrotron radiation infrared (SRIR) for diffraction-limited scanning mi- croanalysis at high magnification.1 Adaptive optics (AO), in this case deformable mirror (DM), is a potent tool in tackling the problem by modulating the intensity of high brightness structured SRIR beam toward a homo- geneous field illumination for IR imaging at high magnification. The latter is required for an efficient coupling of SRIR source to a multi-pixel detector such as focal plane array (FPA).2 Additionally, DM enables to achieve different shapes, optimized for different Cassegrain IR objective. Regardless, the quality of the generated beam relies upon the performance of the adaptive elements, i.e. actuators and their linear and reproducible response to the applied voltage. Moreover, the beam shaping capability of a single DM in controlling light beam position and angle is limited by its actuators influence function. In this work, we implemented two DMs for intensity shaping for the complex SRIR beam. A variation of multi-conjugate AO is implemented to characterize the performance of DMs and their actuators transfer function at multiple locations. An IR sensitive microbolometer array has been optically conjugated to the focal plane of individual actuators and the far-field of DM, in order to probe the corresponding actuating response. By analysing each actuator’s response individually, a measure of linear independence, uniformity in response, and cross-coupling can be obtained in a spectral range, from visible to near and mid IR. Additionally, by assembling the vectorized version of each actuator response, the transfer matrix can be formed. This matrix describes the relationship between the actuation effect on the beam and the response of the IR microbolometer, at the given conjugate planes. Based on such discussion, we assess the stability of the deformable mirror for open-loop (i.e. without feedback) operation.
|
May 2020
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Open Access
Abstract: Broadband infrared nanospectroscopy with Synchrotron Radiation, via the atomic force microscope detection of photothermal expansion, was first demonstrated at the MIRIAM beamline of Diamond in 2016. Since then, the system has undergone significant developments and has been available to users in collaboration since January 2018. Continuous nano-FTIR spectra are so-far achieved with useful signal-to-noise in the 4000 – 800 wavenumber region and at around 100 nm spatial resolution (depending on sample geometry and thermal diffusion at the modulation frequency of the IR beam), for soft materials like single biological cells and polymers. Here we briefly describe the nanospectroscopy system and evaluate the performances through comparison of measured data for typical samples with theoretical expectations. Noise levels are shown to be cantilever thermal-noise limited at the first contact resonance currently employed, whilst signal levels are consistent with expectations for the focussed IR power density available from the IR beamline and using sinusoidal modulation of the beam tuned to the contact resonance frequency. Finally, planned enhancements of the performance, including access to higher cantilever contact resonances to reduce noise and increase spatial resolution, are discussed.
|
Feb 2020
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Arun S.
Babal
,
Lorenzo
Donà
,
Matthew R.
Ryder
,
Kirill
Titov
,
Abhijeet K.
Chaudhari
,
Zhixin
Zeng
,
Chris S.
Kelley
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Bartolomeo
Civalleri
,
Jin-Chong
Tan
Diamond Proposal Number(s):
[14902]
Abstract: Research on the broadband dielectric response of metal-organic frameworks (MOFs) is an emergent field that could yield exciting device applications, such as smart optoelectronics, terahertz sensors, high-speed telecommunications and microelectronics. Hitherto, a detailed understanding of the physical mechanisms controlling the frequency-dependent dielectric and optical behavior of MOFs is lacking because a large number of studies have focused only on static dielectric constants. Herein we employed high-resolution spectroscopic techniques in combination with periodic ab initio density functional theory (DFT) calculations to establish the different polarization processes for a porous copper-based MOF, termed HKUST-1. We used alternating current measurements to determine its dielectric response between 4 Hz and 1.5 MHz where orientational polarization is predominant, while synchrotron infrared (IR) reflectance was used to probe the far-IR, mid-IR, and near-IR dielectric response across the 1.2 THz to 150 THz range (ca. 40 – 5000 cm-1) where vibrational and optical polarizations are principal contributors to its dielectric permittivity. We demonstrate the role of pressure on the evolution of broadband dielectric response, where THz vibrations reveal distinct blue and red shifts of phonon modes from structural deformation of the copper paddle-wheel and the organic linker, respectively. We also investigated the effect of temperature on dielectric constants in the MHz region pertinent to microelectronics, to study temperature-dependent dielectric losses via dissipation in an alternating electric field. The DFT calculations offer insights into the physical mechanisms responsible for dielectric transitions observed in the experiments and enable us to explain the frequency shifts phenomenon detected under pressure. Together, the experiments and theory have enabled us to glimpse into the complex dielectric response and mechanisms underpinning a prototypical MOF subject to pressure, temperature, and vast frequencies.
|
Nov 2019
|
|
B18-Core EXAFS
B22-Multimode InfraRed imaging And Microspectroscopy
|
Kirill
Titov
,
Dmitry
Eremin
,
Alexey S.
Kashin
,
Roberto
Boada Romero
,
Barbara
Souza
,
Chris S.
Kelley
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Diego
Gianolio
,
Giannantonio
Cibin
,
Svemir
Rudic
,
Valentine P
Ananikov
,
Jin-Chong
Tan
Diamond Proposal Number(s):
[14902, 17146]
Abstract: A catalytic system based on OX-1 metal-organic framework nanosheets is reported, incorporating catalytically active palladium (Pd) species. The Pd@OX-1 guest@host system is rapidly synthesised via a facile single-pot supramolecular assembly method, with the possibility of controlling the Pd loading. The structures of the re-sulting framework and of the active Pd species before and after catalytic reactions are studied in detail using a wide variety of techniques including synchrotron radiation infrared spectroscopy, inelastic neutron scattering and X-ray absorption spectroscopy. Crystals of the resulting Pd@OX-1 composite material contain predomi-nantly atomic and small cluster Pd species, which selectively reside on benzene rings of the benzenedicarbox-ylate (BDC) linkers. The composites are shown to efficiently catalyse the Suzuki coupling and Heck arylation reactions under a variety of conditions. Pd@OX-1 further shows potential to be recycled for at least five cycles of each reaction as well as an ability to recapture active Pd species during both catalytic reactions.
|
Feb 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[13668]
Open Access
Abstract: This investigation establishes, for the first time, the viability of micro-photoacoustic infrared spectroscopy (microPAS). A cell that allows photoacoustic (PA) infrared spectroscopy measurements on small samples was constructed and tested in this work. The setup allows visualizing the sample and selecting specific measurement positions. It can be used with conventional Fourier-Transform infrared spectrometers and a variety of light sources, including conventional near- and mid-infrared lamps, synchrotron radiation, and laser sources. The cell was successfully used to discriminate between individual polymer beads based on differences between their PA spectra. The demonstrated spatial resolution is better than 100 µm and, in at least one case, as good as 20 µm.
|
Jul 2018
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Matthew R.
Ryder
,
Zhixin
Zeng
,
Kirill
Titov
,
Yueting
Sun
,
Ezwan M.
Mahdi
,
Irina
Flyagina
,
Thomas
Bennett
,
Bartolomeo
Civalleri
,
Chris S.
Kelley
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Jin-Chong
Tan
Diamond Proposal Number(s):
[10215, 14902]
Abstract: The field of metal-organic framework (MOF) materials is rapidly advancing towards practical applications, consequently it is urgent to achieve a better understanding and precise control of their physical properties. Yet research on the dielectric properties of MOFs is at its infancy, where studies are confined to the static dielectric behavior or lower frequency response (kHz-MHz) only. Herein we present the pioneering use of synchrotron-based infrared reflectivity experiments, combined with density functional theory (DFT) calculations to accurately determine the dynamic dielectric properties of zeolitic imidazolate frameworks (ZIFs: a topical family of MOFs). We show, for the first time, the frequency-dependent dielectric response of representative ZIF compounds, bridging the near-, mid-, and far-infrared (terahertz THz) broadband frequencies. We establish the structure-property relations as a function of framework porosity and structural change. Our comprehensive results will be paving the way for novel ZIF-based terahertz applications, such as infrared optical sensors and high-speed wireless communications.
|
May 2018
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[14902]
Abstract: Emerging nanoporous materials, such as metal-organic frameworks (MOFs), are promising low-k dielectrics central to next-generation electronics and high-speed communication. Hitherto, the dielectric characterization of MOFs is scarce, with very limited experimental data for guiding new materials design and synthesis. Herein we demonstrate the efficacy of high-resolution synchrotron infrared (IR) specular reflectance experiments, to study the dynamic dielectric properties of a flexible MOF structure: bi-stable MIL-53(Al) that exhibits switching between a large pore (LP) and a narrow pore (NP) architecture. We show the ratio of LP:NP content of a polycrystalline sample can be changed via increased mechanical stress applied for pelletizing the MIL-53(Al) powder. We quantify the frequency-dependent dielectric constants over ~1 to 120 THz, identifying all dielectric transitions as a function of stress and phase mixtures, showing how porosity modifies MOF’s dielectric properties.
|
Sep 2017
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Open Access
Abstract: Infrared (IR) spectral imaging is a quantitative scientific technique for measuring both the molecular composition and its spatial distribution across large areas of materials. Synchrotron radiation (SR) enhances IR imaging with a broad spectral bandwidth unobtainable with a conventional laboratory source or laser (covering 10000 to 5 cm-1), while the high collimation and small size of the SRIR source provide a diffraction-limited microbeam. The use of a few micron-sized aperture for IR imaging has a clear advantage in SR in terms of spectral quality, due to the high spectral flux reaching microspots of the sample even at the lowest wavenumbers. In this article, we present IR imaging examples developed mostly in collaboration with the user community and the staff of the IR beamline MIRIAM (Multimode InfraRed Imaging And Microspectroscopy) at Diamond Light Source [1 G. Cinque et al., Synchrotron Radiation News 24(5), 24–33 (2011).
[Taylor & Francis Online], [Google Scholar]
]. The layout of the MIRIAM beamline (B22) is shown in Figure 1. Optically, this is composed of a UHV vacuum vessel including a two periscope system each with two metal mirrors, allowing refocusing and overcoming a midway shield wall (not shown). From the right, the bending magnet source illuminates a first flat mirror (with a horizontal slot rejecting X-rays) that reflects the SRIR fan onto an ellipsoidal mirror. The SRIR is focused midway and collected by another ellipsoidal mirror that redirects it down onto a double flat mirror; this can be translated laterally to send the focused SRIR to either of the two end stations (or part of the beam to both) through wedged diamond windows. The two experimental end stations are composed of Bruker Vertex 80V in-vacuum Fourier Transform IR (FTIR) interferometers with Hyperion 3000 IR microscopes. The IR detectors are broadband or high-sensitivity MCT (mercury cadmium telluride; 100 μm or 50 μm pitch) for point-by-point microscopy, and photovoltaic MCT focal plane array (FPA) 64 × 64 pixel detectors for full-field imaging.
|
Aug 2017
|
|
|
Open Access
Abstract: The spin polarising properties of the iron oxide magnetite (Fe3O4Fe3O4) make it attractive for use in spintronic devices, but its sensitivity to compositional and structural variations make it challenging to prepare reliably. Infrared microspectroscopy and modelling are used to determine the spatial variation in the chemical composition of three thin films of iron oxide prepared using three different deposition methods. The technique is easily able to distinguish between films which contain metallic iron and different iron oxide phases as well as spatial variations in composition across the films.
|
Apr 2017
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
Optics
|
Open Access
Abstract: Near-field infrared (IR) spectroscopy is revolutionising molecular imaging by allowing vibrational spectroscopic analysis at the sub-micrometre scale. We recently developed the world’s first near-field IR photothermal microscope using synchrotron radiation (SR), which uniquely spans a spectral range from the near-IR to the far-IR/THz. Here we demonstrate the capability of the near-field method to probe polymer microspheres within a protein matrix, and we present the first IRSR photothermal near-field Fourier transform infrared (FT-IR) spectrum from within an individual biological cell, which establishes the feasibility of hyperspectral mapping at sub-micrometre resolution in a practical timescale. Photothermal near-field spectroscopy provides both depth sensitivity and IR molecular specificity, which is ideal for organic matter/biological samples. In addition, SR gives seamless and ultra-broadband spectral coverage superior to the bandwidth of commercially available lasers.
|
Nov 2016
|
|