I09-Surface and Interface Structural Analysis
|
Open Access
Abstract: Understanding a material’s electronic structure is crucial to the development of many functional devices from semiconductors to solar cells and Li-ion batteries. A material’s properties, including electronic structure, are dependent on the arrangement of its atoms. However, structure determination (the process of uncovering the atomic arrangement), is impeded, both experimentally and computationally, by disorder. The lack of a verifiable atomic model presents a huge challenge when designing functional amorphous materials. Such materials may be characterised through their local atomic environments using, for example, solid-state NMR and XAS. By using these two spectroscopy methods to inform the sampling of configurations from ab initio molecular dynamics we devise and validate an amorphous model, choosing amorphous alumina to illustrate the approach due to its wide range of technological uses. Our model predicts two distinct geometric environments of AlO5 coordination polyhedra and determines the origin of the pre-edge features in the Al K-edge XAS. From our model we construct an average electronic density of states for amorphous alumina, and identify localized states at the conduction band minimum (CBM). We show that the presence of a pre-edge peak in the XAS is a result of transitions from the Al 1s to Al 3s states at the CBM. Deconvoluting this XAS by coordination geometry reveals contributions from both AlO4 and AlO5 geometries at the CBM give rise to the pre-edge, which provides insight into the role of AlO5 in the electronic structure of alumina. This work represents an important advance within the field of solid-state amorphous modelling, providing a method for developing amorphous models through the comparison of experimental and computationally derived spectra, which may then be used to determine the electronic structure of amorphous materials.
|
Dec 2022
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[28349]
Open Access
Abstract: Single-source precursors are ubiquitous in a number of areas of chemistry and material science due to their ease of use and wide range of potential applications. The development of new single-source precursors is essential in providing entries to new areas of chemistry. In this work, we synthesize nine new structurally related bimetallic metal-zirconium alkoxides, which can be used as single-source precursors to zirconia-based materials. Detailed analysis of the structures of these complexes provides important insights into the main factors influencing their aggregation. Investigation of the thermal decomposition of these species by TGA, PXRD, SEM, and EDS reveals that they can be used to produce bimetal oxides, such as Li2ZrO3, or a mixture of metal oxides, such as CuO and ZrO2. Significantly, these studies show that thermodynamically unstable forms of zirconia, such as the tetragonal phase, can be stabilized by metal doping, providing the promise for targeted deposition of zirconia materials for specific applications.
|
Nov 2022
|
|
B07-B-Versatile Soft X-ray beamline: High Throughput
I10-Beamline for Advanced Dichroism
|
Jack E. N.
Swallow
,
Michael W.
Fraser
,
Nis-Julian H.
Kneusels
,
Jodie F.
Charlton
,
Christopher G.
Sole
,
Conor M. E.
Phelan
,
Erik
Bjorklund
,
Peter
Bencok
,
Carlos
Escudero
,
Virginia
Perez-Dieste
,
Clare P.
Grey
,
Rebecca J.
Nicholls
,
Robert S
Weatherup
Diamond Proposal Number(s):
[25647, 29213, 30816]
Open Access
Abstract: The solid electrolyte interphase (SEI) that forms on Li-ion battery anodes is critical to their long-term performance, however observing SEI formation processes at the buried electrode-electrolyte interface is a significant challenge. Here we show that operando soft X-ray absorption spectroscopy in total electron yield mode can resolve the chemical evolution of the SEI during electrochemical formation in a Li-ion cell, with nm-scale interface sensitivity. O, F, and Si K-edge spectra, acquired as a function of potential, reveal when key reactions occur on high-capacity amorphous Si anodes cycled with and without fluoroethylene carbonate (FEC). The sequential formation of inorganic (LiF) and organic (-(C=O)O-) components is thereby revealed, and results in layering of the SEI. The addition of FEC leads to SEI formation at higher potentials which is implicated in the rapid healing of SEI defects and the improved cycling performance observed. Operando TEY-XAS offers new insights into the formation mechanisms of electrode-electrolyte interphases and their stability for a wide variety of electrode materials and electrolyte formulations.
|
Oct 2022
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[14239]
Open Access
Abstract: Li- and Mn-rich layered oxides (Li1.2Ni0.2Mn0.6O2) are actively pursued as high energy and sustainable alternatives to the current Li-ion battery cathodes that contain Co. However, the severe decay in discharge voltage observed in these cathodes needs to be addressed before they can find commercial applications. A few mechanisms differing in origin have been proposed to explain the voltage fade, which may be caused by differences in material composition, morphology and electrochemical testing protocols. Here, these challenges are addressed by synthesising Li1.2Ni0.2Mn0.6O2 using three different hydrothermal and solid-state approaches and studying their degradation using the same cell design and cycling protocols. The voltage fade is found to be similar under the same electrochemical testing protocols, regardless of the synthesis method. X-ray absorption near edge, extended X-ray absorption fine structure spectroscopies, and energy loss spectroscopy in a scanning transmission electron microscope indicate only minor changes in the bulk Mn oxidation state but reveal a much more reduced particle surface upon extended cycling. No spinel phase is seen via the bulk structural characterisation methods of synchrotron X-ray diffraction, 7Li magic angle spinning solid state nuclear magnetic resonance and Raman spectroscopy. Thus, the voltage fade is believed to largely result from a heavily reduced particle surface. This hypothesis is further confirmed by galvanostatic intermittent titration technique analysis, which indicates that only very small shifts in equilibrium potential take place, in contrast to the overpotential which builds up after cycling. This suggests that a major source of the voltage decay is kinetic in origin, resulting from a heavily reduced particle surface with slow Li transport.
|
Sep 2022
|
|
I11-High Resolution Powder Diffraction
|
Michael F.
Thorne
,
Celia
Castillo Blas
,
Lauren N.
Mchugh
,
Alice M.
Bumstead
,
Georgina
Robertson
,
Adam F.
Sapnik
,
Chloe S.
Coates
,
Farheen N.
Sayed
,
Clare P.
Grey
,
David A.
Keen
,
Martin
Etter
,
Ivan
Da Silva
,
Krunoslav
Užarević
,
Thomas D.
Bennett
Diamond Proposal Number(s):
[28349]
Open Access
Abstract: The structure of a new ZIF-8 polymorph with quartz topology (qtz) is reported. This qtz-[Zn(mIm)2] phase was obtained by mechanically amorphising crystalline ZIF-8, before heating the resultant amorphous phase to between 282 and 316 °C. The high temperature phase structure was obtained from X-ray powder diffraction, and its thermal behaviour, CO2 gas sorption properties and dye adsorption ability were investigated.
|
Sep 2022
|
|
I11-High Resolution Powder Diffraction
|
Conrad
Szczuka
,
Bora
Karasulu
,
Matthias F.
Groh
,
Farheen
Sayed
,
Timothy J.
Sherman
,
Joshua D.
Bocarsly
,
Sundeep
Vema
,
Svetlana
Menkin
,
Steffen P.
Emge
,
Andrew J.
Morris
,
Clare P.
Grey
Diamond Proposal Number(s):
[28349]
Open Access
Abstract: All-solid-state batteries based on non-combustible solid electrolytes are promising candidates for safe energy storage systems. In addition, they offer the opportunity to utilize metallic lithium as an anode. However, it has proven to be a challenge to design an electrolyte that combines high ionic conductivity and processability with thermodynamic stability toward lithium. Herein, we report a new highly conducting solid solution that offers a route to overcome these challenges. The Li–P–S ternary was first explored via a combination of high-throughput crystal structure predictions and solid-state synthesis (via ball milling) of the most promising compositions, specifically, phases within the Li3P–Li2S tie line. We systematically characterized the structural properties and Li-ion mobility of the resulting materials by X-ray and neutron diffraction, solid-state nuclear magnetic resonance spectroscopy (relaxometry), and electrochemical impedance spectroscopy. A Li3P–Li2S metastable solid solution was identified, with the phases adopting the fluorite (Li2S) structure with P substituting for S and the extra Li+ ions occupying the octahedral voids and contributing to the ionic transport. The analysis of the experimental data is supported by extensive quantum-chemical calculations of both structural stability, diffusivity, and activation barriers for Li+ transport. The new solid electrolytes show Li-ion conductivities in the range of established materials, while their composition guarantees thermodynamic stability toward lithium metal anodes.
|
Aug 2022
|
|
E02-JEM ARM 300CF
I14-Hard X-ray Nanoprobe
|
Tiarnan A. S.
Doherty
,
Dominik
Kubicki
,
Stuart
Macpherson
,
Young-Kwang
Jung
,
Duncan
Johnstone
,
Affan
Iqbal
,
Dengyang
Guo
,
Kyle
Frohna
,
Mohsen
Danaie
,
Elizabeth
Tennyson
,
Satyawan
Nagane
,
Anna
Abfalterer
,
Miguel
Anaya
,
Yu-Hsien
Chiang
,
Phillip
Crout
,
Francesco Simone
Ruggeri
,
Sean
Collins
,
Clare
Grey
,
Aron
Walsh
,
Paul
Midgley
,
Samuel
Stranks
Diamond Proposal Number(s):
[20420, 24111]
Abstract: There is currently substantial interest in stabilizing the simple ternary FAPbI3 perovskite because of its near-optimal band gap and superior thermal stability compared to methylammonium-based materials.1 The key challenge of FAPbI3 is the thermodynamic instability of the polymorph required for efficient light harvesting. Without additives, the black photoactive α-polymorph is only stable above ca. 160°C. At room temperature, it is metastable and rapidly transitions to the non-perovskite yellow polymorph. The stabilization of the black polymorph at room temperature can be achieved, for example, by adding a small amount of the pernicious MA through use of methylammonium chloride (in conjunction with formamidinium formate),2 methylammonium thiocyanate,3 or methylammonium formate.4 We have developed a new stabilization strategy which does not involve the addition of MA.5 Instead, it uses a surface-templating agent (EDTA) which modifies the material without incorporating into the structure. We use a combination of scanning electron diffraction (SED) and nuclear magnetic resonance spectroscopies (NMR, NQR) to identify the atomic-level mechanism of action of EDTA in this role. We find that it templates the structure by inducing a small octahedral tilt, only resolvable with local characterization techniques, and imparts remarkable phase stability by arresting transitions to low-dimensional polymorphs. This octahedral tilt engineering strategy is remarkably universal, and we show that it is the intrinsic stabilization mechanism in the state-of-the-art FA-rich mixed-cation materials.
|
Feb 2022
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[21995, 26285]
Abstract: Ni-rich lithium nickel manganese cobalt (NMC) oxide cathode materials promise Li-ion batteries with increased energy density and lower cost. However, higher Ni content is accompanied by accelerated degradation and thus poor cycle lifetime, with the underlying mechanisms and their relative contributions still poorly understood. Here, we combine electrochemical analysis with surface-sensitive X-ray photoelectron and absorption spectroscopies to observe the interfacial degradation occurring in LiNi0.8Mn0.1Co0.1O2–graphite full cells over hundreds of cycles between fixed cell voltages (2.5–4.2 V). Capacity losses during the first ∼200 cycles are primarily attributable to a loss of active lithium through electrolyte reduction on the graphite anode, seen as thickening of the solid-electrolyte interphase (SEI). As a result, the cathode reaches ever-higher potentials at the end of charge, and with further cycling, a regime is entered where losses in accessible NMC capacity begin to limit cycle life. This is accompanied by accelerated transition-metal reduction at the NMC surface, thickening of the cathode electrolyte interphase, decomposition of residual lithium carbonate, and increased cell impedance. Transition-metal dissolution is also detected through increased incorporation into and thickening of the SEI, with Mn found to be initially most prevalent, while the proportion of Ni increases with cycling. The observed evolution of anode and cathode surface layers improves our understanding of the interconnected nature of the degradation occurring at each electrode and the impact on capacity retention, informing efforts to achieve a longer cycle lifetime in Ni-rich NMCs.
|
Feb 2022
|
|
I11-High Resolution Powder Diffraction
|
Andrew Stephen
Leach
,
Alice
Llewellyn
,
Chao
Xu
,
Chun
Tan
,
Thomas M. M.
Heenan
,
Alex
Dimitrijevic
,
Karin
Kleiner
,
Clare P.
Grey
,
Dan J. L.
Brett
,
Chiu C.
Tang
,
Paul R.
Shearing
,
Rhodri
Jervis
Diamond Proposal Number(s):
[22498, 24122]
Open Access
Abstract: Understanding the performance of commercially relevant cathode materials for lithium-ion (Li-ion) batteries is vital to realize the potential of high-capacity materials for automotive applications. Of particular interest is the spatial variation of crystallographic behavior across (what can be) highly inhomogeneous electrodes. In this work, a high-resolution X-ray diffraction technique was used to obtain operando transmission measurements of Li-ion pouch cells to measure the spatial variances in the cell during electrochemical cycling. Through spatially resolved investigations of the crystallographic structures, the distribution of states of charge has been elucidated. A larger portion of the charging is accounted for by the central parts, with the edges and corners delithiating to a lesser extent for a given average electrode voltage. The cells were cycled to different upper cutoff voltages (4.2 and 4.3 V vs. graphite) and C-rates (0.5, 1, and 3C) to study the effect on the structure of the NMC811 cathode. By combining this rapid data collection method with a detailed Rietveld refinement of degraded NMC811, the spatial dependence of the degradation caused by long-term cycling (900 cycles) has also been shown. The variance shown in the pristine measurements is exaggerated in the aged cells with the edges and corners offering an even lower percentage of the charge. Measurements collected at the very edge of the cell have also highlighted the importance of electrode alignment, with a misalignment of less than 0.5 mm leading to significantly reduced electrochemical activity in that area.
|
Jan 2022
|
|
I11-High Resolution Powder Diffraction
|
Eun Jeong
Kim
,
Philip A.
Maughan
,
Euan N.
Bassey
,
Raphaële J.
Clément
,
Le Anh
Ma
,
Laurent C.
Duda
,
Divya
Sehrawat
,
Reza
Younesi
,
Neeraj
Sharma
,
Clare P.
Grey
,
Robert
Armstrong
Diamond Proposal Number(s):
[26699]
Open Access
Abstract: Activation of oxygen redox represents a promising strategy to enhance the energy density of positive electrode materials in both lithium and sodium-ion batteries. However, the large voltage hysteresis associated with oxidation of oxygen anions during the first charge represents a significant challenge. Here, P3-type Na0.67Li0.2Mn0.8O2 is reinvestigated and a ribbon superlattice is identified for the first time in P3-type materials. The ribbon superstructure is maintained over cycling with very minor unit cell volume changes in the bulk while Li ions migrate reversibly between the transition metal and Na layers at the atomic scale. In addition, a range of spectroscopic techniques reveal that a strongly hybridized Mn 3d–O 2p favors ligand-to-metal charge transfer, also described as a reductive coupling mechanism, to stabilize reversible oxygen redox. By preparing materials under three different synthetic conditions, the degree of ordering between Li and Mn is varied. The sample with the maximum cation ordering delivers the largest capacity regardless of the voltage windows applied. These findings highlight the importance of cationic ordering in the transition metal layers, which can be tuned by synthetic control to enhance anionic redox and hence energy density in rechargeable batteries.
|
Dec 2021
|
|