I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[30461]
Open Access
Abstract: A 2×2×1 superstructure of the P63/mmc NiAs structure is reported in which kagome nets are stabilized in the octahedral transition metal layers of the compounds Ni0.7Pd0.2Bi, Ni0.6Pt0.4Bi, and Mn0.99Pd0.01Bi. The ordered vacancies that yield the true hexagonal kagome motif lead to filling of trigonal bipyramidal interstitial sites with the transition metal in this family of “kagome-NiAs” type materials. Further ordering of vacancies within these interstitial layers can be compositionally driven to simultaneously yield kagome-connected layers and a net polarization along the c axes in Ni0.9Bi and Ni0.79Pd0.08Bi, which adopt Fmm2 symmetry. The polar and non-polar materials exhibit different electronic transport behaviour, reflecting the tuneability of both structure and properties within the NiAs-type bismuthide materials family.
|
Mar 2024
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[23666]
Open Access
Abstract: The synthesis, structure, and properties of the three-anion superlattice materials Bi4O4SeBr2 and Bi6O6Se2Cl2 are reported. These materials crystallise in structures that form part of a homologous series of compounds comprised of stackings of BiOCl- and Bi2O2Se-like units. Bi4O4SeBr2 is analogous to Bi4O4Se2Cl2, whereas Bi6O6Se2Cl2 contains an additional Bi2O2Se layer that produces off-centred anions. The band gaps of both materials are indirect, with Eg = 1.15(5) eV, and the materials behave as doped semiconductors with very low thermal conductivities. These materials expand the synthetic scope of multiple anion superlattice materials and, with optimisation, may also be platforms for future thermoelectric materials.
|
May 2022
|
|
I11-High Resolution Powder Diffraction
|
Christopher M.
Collins
,
Luke M.
Daniels
,
Quinn
Gibson
,
Michael W.
Gaultois
,
Michael
Moran
,
Richard
Feetham
,
Michael J.
Pitcher
,
Matthew S
Dyer
,
Charlene
Delacotte
,
Marco
Zanella
,
Claire A.
Murray
,
Gyorgyi
Glodan
,
Olivier
Perez
,
Denis
Pelloquin
,
Troy D.
Manning
,
Jonathan
Alaria
,
George R.
Darling
,
John B.
Claridge
,
Matthew J.
Rosseinsky
Open Access
Abstract: We report the aperiodic titanate Ba 10 Y 6 Ti 4 O 27 with a room temperature thermal conductivity that equals the lowest reported for an oxide. The structure is characterised by discontinuous occupancy modulation of each of the sites, and can be considered as a quasicrystal. The resulting localisation of lattice vibrations suppresses phonon transport of heat. This new lead material for low thermal conductivity oxides is metastable and located within a quaternary phase field that has been previously explored – its isolation thus requires a precisely‐defined synthetic protocol. The necessary narrowing of the search space for experimental investigation is achieved by evaluation of titanate crystal chemistry, prediction of unexplored structural motifs that will favour synthetically accessible new compositions and assessment of their properties with machine learning models.
|
May 2021
|
|
I09-Surface and Interface Structural Analysis
|
Leanne A. H.
Jones
,
Wojciech M.
Linhart
,
Nicole
Fleck
,
Jack E. N.
Swallow
,
Philip A. E.
Murgatroyd
,
Huw
Shiel
,
Thomas J.
Featherstone
,
Matthew J.
Smiles
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Laurence J.
Hardwick
,
Jonathan
Alaria
,
Frank
Jaeckel
,
Robert
Kudrawiec
,
Lee A.
Burton
,
Aron
Walsh
,
Jonathan M.
Skelton
,
Tim D.
Veal
,
Vin R.
Dhanak
Diamond Proposal Number(s):
[21431]
Open Access
Abstract: The effects of Sn
5
s
lone pairs in the different phases of Sn sulphides are investigated with photoreflectance, hard x-ray photoemission spectroscopy (HAXPES), and density functional theory. Due to the photon energy-dependence of the photoionization cross sections, at high photon energy, the Sn
5
s
orbital photoemission has increased intensity relative to that from other orbitals. This enables the Sn
5
s
state contribution at the top of the valence band in the different Sn-sulphides, SnS,
Sn
2
S
3
, and
SnS
2
, to be clearly identified. SnS and
Sn
2
S
3
contain Sn(II) cations and the corresponding Sn
5
s
lone pairs are at the valence band maximum (VBM), leading to
∼
1.0
–1.3 eV band gaps and relatively high VBM on an absolute energy scale. In contrast,
SnS
2
only contains Sn(IV) cations, no filled lone pairs, and therefore has a
∼
2.3
eV room-temperature band gap and much lower VBM compared with SnS and
Sn
2
S
3
. The direct band gaps of these materials at 20 K are found using photoreflectance to be 1.36, 1.08, and 2.47 eV for SnS,
Sn
2
S
3
, and
SnS
2
, respectively, which further highlights the effect of having the lone-pair states at the VBM. As well as elucidating the role of the Sn
5
s
lone pairs in determining the band gaps and band alignments of the family of Sn-sulphide compounds, this also highlights how HAXPES is an ideal method for probing the lone-pair contribution to the density of states of the emerging class of materials with
n
s
2
configuration.
|
Jul 2020
|
|
|
Philip A. E.
Murgatroyd
,
Matthew J.
Smiles
,
Christopher N.
Savory
,
Thomas P.
Shalvey
,
Jack E. N.
Swallow
,
Nicole
Fleck
,
Craig M.
Robertson
,
Frank
Jaeckel
,
Jonathan
Alaria
,
Jonathan D.
Major
,
David O.
Scanlon
,
Tim D.
Veal
Open Access
Abstract: The van der Waals material GeSe is a potential solar absorber, but its optoelectronic properties are not yet fully understood. Here, through a combined theoretical and experimental approach, the optoelectronic and structural properties of GeSe are determined. A fundamental absorption onset of 1.30 eV is found at room temperature, close to the optimum value according to the Shockley-Queisser detailed balance limit, in contrast to previous reports of an indirect fundamental transition of 1.10 eV. The measured absorption spectra and first-principles joint density of states are mutually consistent, both exhibiting an additional distinct onset $\sim$0.3~eV above the fundamental absorption edge. The band gap values obtained from first-principles calculations converge, as the level of theory and corresponding computational cost increases, to 1.33 eV from the quasiparticle self-consistent GW method, including the solution to the Bethe-Salpeter equation. This agrees with the 0~K value determined from temperature-dependent optical absorption measurements. Relaxed structures based on hybrid functionals reveal a direct fundamental transition in contrast to previous reports. The optoelectronic properties of GeSe are resolved with the system described as a direct semiconductor with a 1.30 eV room temperature band gap. The high level of agreement between experiment and theory encourages the application of this computational methodology to other van der Waals materials.
|
Mar 2020
|
|
I19-Small Molecule Single Crystal Diffraction
|
C.
Delacotte
,
G. F. S.
Whitehead
,
M. J.
Pitcher
,
C. M
Robertson
,
P. M.
Sharp
,
M. S.
Dyer
,
Jo.
Alaria
,
J. B.
Claridge
,
G. R.
Darling
,
D. R.
Allan
,
G.
Winter
,
M. J.
Rosseinsky
Diamond Proposal Number(s):
[15777]
Open Access
Abstract: Hexaferrites are an important class of magnetic oxides with applications in data storage and electronics. Their crystal structures are highly modular, consisting of Fe- or Ba-rich close-packed blocks that can be stacked in different sequences to form a multitude of unique structures, producing large anisotropic unit cells with lattice parameters typically >100 Å along the stacking axis. This has limited atomic-resolution structure solutions to relatively simple examples such as Ba2Zn2Fe12O22, whilst longer stacking sequences have been modelled only in terms of block sequences, with no refinement of individual atomic coordinates or occupancies. This paper describes the growth of a series of complex hexaferrite crystals, their atomic-level structure solution by high-resolution synchrotron X-ray diffraction, electron diffraction and imaging methods, and their physical characterization by magnetometry. The structures include a new hexaferrite stacking sequence, with the longest lattice parameter of any hexaferrite with a fully determined structure.
|
Nov 2018
|
|
I11-High Resolution Powder Diffraction
|
Quinn D.
Gibson
,
Matthew S.
Dyer
,
Craig
Robertson
,
Charlene
Delacotte
,
Troy D.
Manning
,
Michael J.
Pitcher
,
Luke M.
Daniels
,
Marco
Zanella
,
Jonathan
Alaria
,
John B.
Claridge
,
Matthew
Rosseinsky
Diamond Proposal Number(s):
[17193]
Abstract: Here we report a new layered homologous series (Bi2O2Cu2−δSe2)mδ+(Bi2O2Se1−(m/n)δX (m/n)δ)nδ− (X = Cl, Br), composed of the known structural blocks BiOCuSe and Bi2O2Se. These structures are accessed by combining charge-compensating Cu vacancies and (Cl, Br) for Se substitution, in different layers. These new stacking homologoues have properties markedly different from those of the parent materials, and changing the layer stacking affects the properties including the band gap and thermal conductivity.
|
Sep 2018
|
|
I11-High Resolution Powder Diffraction
|
Christos A.
Tzitzeklis
,
Jyoti K.
Gupta
,
Matthew S.
Dyer
,
Troy D.
Manning
,
Michael J.
Pitcher
,
Hongjun J.
Niu
,
Stanislav
Savvin
,
Jonathan
Alaria
,
George R.
Darling
,
John B.
Claridge
,
Matthew J.
Rosseinsky
Diamond Proposal Number(s):
[12336]
Abstract: It is challenging to achieve p-type doping of zinc oxides (ZnO), which are of interest as transparent conductors in optoelectronics. A ZnO-related ternary compound, SrZnO2, was investigated as a potential host for p-type conductivity. First-principles investigations were used to select from a range of candidate dopants the substitution of Li+ for Zn2+ as a stable, potentially p-type, doping mechanism in SrZnO2. Subsequently, single-phase bulk samples of a new p-type-doped oxide, SrZn1–xLixO2 (0 < x < 0.06), were prepared. The structural, compositional, and physical properties of both the parent SrZnO2 and SrZn1–xLixO2 were experimentally verified. The band gap of SrZnO2 was calculated using HSE06 at 3.80 eV and experimentally measured at 4.27 eV, which confirmed the optical transparency of the material. Powder X-ray diffraction and inductively coupled plasma analysis were combined to show that single-phase ceramic samples can be accessed in the compositional range x < 0.06. A positive Seebeck coefficient of 353(4) μV K–1 for SrZn1–xLixO2, where x = 0.021, confirmed that the compound is a p-type conductor, which is consistent with the pO2 dependence of the electrical conductivity observed in all SrZn1–xLixO2 samples. The conductivity of SrZn1–xLixO2 is up to 15 times greater than that of undoped SrZnO2 (for x = 0.028 σ = 2.53 μS cm–1 at 600 °C and 1 atm of O2).
|
Sep 2018
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[17193]
Open Access
Abstract: By tuning the A site cation size it is possible to control the degree of octahedral distortion and ultimately structural symmetry in the new perovskite solid solution La0.5Na0.5−xKxTiO3, affording a rhombohedral-to-cubic transition as x increases above 0.4. The La3+ and K+ cations are distributed randomly across the A site leading to significant phonon disorder in cubic La0.5K0.5TiO3 (Pm[3 with combining macron]m) which produces a phonon-glass with a thermal conductivity of 2.37(12) W m−1 K−1 at 300 K; a reduction of 75% when compared with isostructural SrTiO3. This simple cation substitution of Sr2+ for La3+ and K+ maintains the flexible structural chemistry of the perovskite structure and two mechanisms of doping for the introduction of electronic charge carriers are explored; A site doping in La1−yKyTiO3 or B site doping in La0.5K0.5Ti1−zNbzO3. The phonon-glass thermal conductivity of La0.5K0.5TiO3 is retained upon doping through both of these mechanisms highlighting how the usually strongly coupled thermal and electronic transport can be minimised by mass disorder in perovskites. Precise control over octahedral distortion in A site doped La1−yKyTiO3, which has rhombohedral (R[3 with combining macron]c) symmetry affords lower band dispersions and increased carrier effective masses over those achieved in B site doped La0.5K0.5Ti1−zNbzO3 which maintains the cubic (Pm[3 with combining macron]m) symmetry of the undoped La0.5K0.5TiO3 parent. The higher Seebeck coefficients of A site doped La1−yKyTiO3 yield larger power factors and lead to increased thermoelectric figures of merit and improved conversion efficiencies compared with the mechanism for B site doping.
|
Jul 2018
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[14239]
Abstract: Highly dense CaMn1−xRexO3 (0 ≤ x ≤ 0.04) samples were prepared by solid-state synthesis. The effect of Re doping was assessed by the characterisation of crystal structure, oxygen content, and electrical and thermal transport properties. The oxidation state of the substituted Re was determined by X-ray absorption near edge spectra to be Re7+, and led to expansion of the lattice and an increase in electron carrier concentration due to the formation of Mn3+. The thermal behaviour of the electrical conductivity and the thermopower over a wide temperature range allowed identification of different conduction mechanisms: (1) below 110 K, 3D variable range hopping, (2) between 110 and 650 K, small polaron transport, and (3) above 650 K, activation of carriers over a mobility edge. Evaluation of the power factor expected for different dopant oxidation states as a function of dopant concentration shows that the doping strategy using a heavy heptavalent ion allows accessibility of the peak power factor at lower dopant concentrations, lowering the amount of non-ionised impurities, and therefore improves the electronic substitution efficiency, the ratio of activated carriers over the nominal doping concentration, compared to previously studied dopants. An increased power factor and a reduced lattice thermal conductivity are obtained with a peak figure of merit ZT = 0.16(3) at 947 K for CaMn0.98Re0.02O3. This is an approximately two-fold increase compared to undoped CaMnO3, and is comparable to the highest values reported for highly dense B-site doped CaMnO3.
|
Nov 2017
|
|