I05-ARPES
|
F.
Mazzola
,
C.-M.
Yim
,
V.
Sunko
,
S.
Khim
,
P.
Kushwaha
,
O. J.
Clark
,
L.
Bawden
,
I.
Markovic
,
D.
Chakraborti
,
T. K.
Kim
,
M.
Hoesch
,
A. P.
Mackenzie
,
P.
Wahl
,
P. D. C.
King
Diamond Proposal Number(s):
[12469, 14927, 1626]
Open Access
Abstract: Controlling spin wave excitations in magnetic materials underpins the burgeoning field of magnonics. Yet, little is known about how magnons interact with the conduction electrons of itinerant magnets, or how this interplay can be controlled. Via a surface-sensitive spectroscopic approach, we demonstrate a strong electron–magnon coupling at the Pd-terminated surface of the delafossite oxide PdCoO2, where a polar surface charge mediates a Stoner transition to itinerant surface ferromagnetism. We show how the coupling is enhanced sevenfold with increasing surface disorder, and concomitant charge carrier doping, becoming sufficiently strong to drive the system into a polaronic regime, accompanied by a significant quasiparticle mass enhancement. Our study thus sheds light on electron–magnon interactions in solid-state materials, and the ways in which these can be controlled.
|
Feb 2022
|
|
I05-ARPES
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[19479, 17699]
Abstract: An international group of researchers wanted to study the electronic properties of an unusual coupled system. It has one layer that supports very mobile carriers, and one that supports Mott insulating and magnetically-ordered states. They performed initial studies using angle-resolved photoemission spectroscopy (ARPES) on beamline I05 at Diamond Light Source, observing some unusual spectral signatures. Theoretical calculations suggested that correlations and interlayer interactions had an unusual role in their generation. To understand the origin of these unusual spectral signatures, the team used Diamond’s Surface and Interface Structural Analysis beamline (I09) to perform ARPES measurements in the soft X-ray regime. The combined nature of the study, with closely integrated work on I09 and I05, applying photoemission measurements in different regimes, was crucial to the success of this work. By combining theory with the results from I09 and I05, the team were able to show that an intertwining of the spin and charge response in the system dominates the photoemission response.
ARPES is usually a non-magnetic probe, but this work demonstrated that in certain circumstances it becomes sensitive to spin-correlations in solids. Scientists could use the same approach to study materials that are incompatible with other, more conventional probes of spin- spin correlation functions. This potentially opens up new systems to experimental study, and an improved understanding of their magnetic properties would be important for real-world applications such as 2D spintronics.
|
Jul 2021
|
|
I05-ARPES
|
Diamond Proposal Number(s):
[18705]
Open Access
Abstract: We report a combined experimental and theoretical study of the surface and bulk electronic structure of aluminium diboride, a nonsuperconducting sister compound of the superconductor
MgB
2
. We perform angle-resolved photoemission measurements with variable photon energy, and compare them to density functional theory calculations to disentangle the surface and bulk contributions to the measured spectra. Aluminium diboride is known to be aluminium deficient,
Al
1
−
δ
B
2
, which would be expected to lead to a hole doping as compared to the nominally stoichimoetric compound. Nonetheless, we find that the bulk
σ
states, which mediate superconductivity in
MgB
2
, remain more than
600
meV
below the Fermi level. However, we also observe
σ
states originating from the boron terminated surface, with an order of magnitude smaller binding energy of
70
meV
, and demonstrate how surface hole-doping can bring these across the Fermi level.
|
Jul 2020
|
|
I05-ARPES
I09-Surface and Interface Structural Analysis
|
Veronika
Sunko
,
F.
Mazzola
,
S.
Kitamura
,
S.
Khim
,
P.
Kushwaha
,
O. J.
Clark
,
M. D.
Watson
,
I.
Markovic
,
D.
Biswas
,
L.
Pourovskii
,
T. K.
Kim
,
T.-L.
Lee
,
P. K.
Thakur
,
H.
Rosner
,
A.
Georges
,
R.
Moessner
,
T.
Oka
,
A. P.
Mackenzie
,
P. D. C.
King
Diamond Proposal Number(s):
[19479, 17699]
Open Access
Abstract: A nearly free electron metal and a Mott insulating state can be thought of as opposite ends of the spectrum of possibilities for the motion of electrons in a solid. Understanding their interaction lies at the heart of the correlated electron problem. In the magnetic oxide metal PdCrO2, nearly free and Mott-localized electrons exist in alternating layers, forming natural heterostructures. Using angle-resolved photoemission spectroscopy, quantitatively supported by a strong coupling analysis, we show that the coupling between these layers leads to an “intertwined” excitation that is a convolution of the charge spectrum of the metallic layer and the spin susceptibility of the Mott layer. Our findings establish PdCrO2 as a model system in which to probe Kondo lattice physics and also open new routes to use the a priori nonmagnetic probe of photoemission to gain insights into the spin susceptibility of correlated electron materials.
|
Feb 2020
|
|
I05-ARPES
|
Veronika
Sunko
,
Edgar
Abarca Morales
,
Igor
Markovic
,
Mark E.
Barber
,
Dijana
Milosavljević
,
Federico
Mazzola
,
Dmitry A.
Sokolov
,
Naoki
Kikugawa
,
Cephise
Cacho
,
Pavel
Dudin
,
Helge
Rosner
,
Clifford
Hicks
,
Philip D. C.
King
,
Andrew P.
Mackenzie
Diamond Proposal Number(s):
[20427]
Open Access
Abstract: Pressure represents a clean tuning parameter for traversing the complex phase diagrams of interacting electron systems, and as such has proved of key importance in the study of quantum materials. Application of controlled uniaxial pressure has recently been shown to more than double the transition temperature of the unconventional superconductor Sr2RuO4, leading to a pronounced peak in Tc versus strain whose origin is still under active debate. Here we develop a simple and compact method to passively apply large uniaxial pressures in restricted sample environments, and utilise this to study the evolution of the electronic structure of Sr2RuO4 using angle-resolved photoemission. We directly visualise how uniaxial stress drives a Lifshitz transition of the γ-band Fermi surface, pointing to the key role of strain-tuning its associated van Hove singularity to the Fermi level in mediating the peak in Tc. Our measurements provide stringent constraints for theoretical models of the strain-tuned electronic structure evolution of Sr2RuO4. More generally, our experimental approach opens the door to future studies of strain-tuned phase transitions not only using photoemission but also other experimental techniques where large pressure cells or piezoelectric-based devices may be difficult to implement.
|
Dec 2019
|
|
I05-ARPES
|
Diamond Proposal Number(s):
[19771, 18555, 16262]
Abstract: We revisit the enduring problem of the 2 × 2 × 2 charge density wave (CDW) order in TiSe2, utilizing photon energy-dependent angle-resolved photoemission spectroscopy to probe the full three-dimensional high- and low-temperature electronic structure. Our measurements demonstrate how a mismatch of dimensionality between the 3D conduction bands and the quasi-2D valence bands in this system leads to a hybridization that is strongly kz dependent. While such a momentum-selective coupling can provide the energy gain required to form the CDW, we show how additional “passenger” states remain, which couple only weakly to the CDW and thus dominate the low-energy physics in the ordered phase of TiSe2.
|
Feb 2019
|
|
I05-ARPES
|
Diamond Proposal Number(s):
[13438, 16262, 18705]
Abstract: We investigate the electronic structure of a two-dimensional electron gas created at the surface of the multivalley semimetal 1T−PtSe2. Using angle-resolved photoemission and first-principles-based surface space-charge calculations, we show how the induced quantum well sub-band states form multiple Fermi surfaces, which exhibit highly anisotropic Rashba-like spin splittings. We further show how the presence of both electronlike and holelike bulk carriers causes the near-surface band bending potential to develop an unusual nonmonotonic form, with spatially segregated electron accumulation and hole accumulation regions, which in turn amplifies the induced spin splitting. Our results thus demonstrate the novel environment that semimetals provide for tailoring electrostatically induced potential profiles and their corresponding quantum sub-band states.
|
Jan 2019
|
|
I05-ARPES
|
Federico
Mazzola
,
Veronika
Sunko
,
Seunghyun
Khim
,
Helge
Rosner
,
Pallavi
Kushwaha
,
Oliver J.
Clark
,
Lewis
Bawden
,
Igor
Markovic
,
Timur K.
Kim
,
Moritz
Hoesch
,
Andrew P.
Mackenzie
,
Phil D. C.
King
Diamond Proposal Number(s):
[12469, 14927, 16262]
Abstract: The ability to modulate the collective properties of correlated electron systems at their interfaces and surfaces underpins the burgeoning field of “designer” quantum materials. Here, we show how an electronic reconstruction driven by surface polarity mediates a Stoner-like magnetic instability to itinerant ferromagnetism at the Pd-terminated surface of the nonmagnetic delafossite oxide metal PdCoO2. Combining angle-resolved photoemission spectroscopy and density-functional theory calculations, we show how this leads to a rich multiband surface electronic structure. We find similar surface state dispersions in PdCrO2, suggesting surface ferromagnetism persists in this sister compound despite its bulk antiferromagnetic order.
|
Dec 2018
|
|
I05-ARPES
|
O. J.
Clark
,
M. J.
Neat
,
K.
Okawa
,
L.
Bawden
,
I.
Markovic
,
Federico
Mazzola
,
J.
Feng
,
V.
Sunko
,
J. M.
Riley
,
W.
Meevasana
,
J.
Fujii
,
I.
Vobornik
,
T. K.
Kim
,
M.
Hoesch
,
T.
Sasagawa
,
P.
Wahl
,
M. S.
Bahramy
,
P. D. C.
King
Diamond Proposal Number(s):
[9500, 12469, 13438, 16262]
Abstract: We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor PdTe2 by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe2 with its sister compound PtSe2, we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p-orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.
|
Apr 2018
|
|
I05-ARPES
|
M. S.
Bahramy
,
O. J.
Clark
,
B.-J.
Yang
,
J.
Feng
,
L.
Bawden
,
J. M.
Riley
,
I.
Markovic
,
F.
Mazzola
,
V.
Sunko
,
D.
Biswas
,
S. P.
Cooil
,
M.
Jorge
,
J. W.
Wells
,
M.
Leandersson
,
T.
Balasubramanian
,
J.
Fujii
,
I.
Vobornik
,
J. E.
Rault
,
T. K.
Kim
,
M.
Hoesch
,
K.
Okawa
,
M.
Asakawa
,
T.
Sasagawa
,
T.
Eknapakul
,
W.
Meevasana
,
P. D. C.
King
Diamond Proposal Number(s):
[2469, 9500, 13438, 14927]
Abstract: Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle-resolved photoemission, we find that these generically host a co-existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.
|
Nov 2017
|
|