I09-Surface and Interface Structural Analysis
|
Adam J.
Jackson
,
Benjamin J.
Parrett
,
Joe
Willis
,
Alex M.
Ganose
,
W. W. Winnie
Leung
,
Yuhan
Liu
,
Benjamin A. D.
Williamson
,
Timur K.
Kim
,
Moritz
Hoesch
,
Larissa S. I.
Veiga
,
Raman
Kalra
,
Jens
Neu
,
Charles A.
Schmuttenmaer
,
Tien-Lin
Lee
,
Anna
Regoutz
,
Tung-Chun
Lee
,
Tim D.
Veal
,
Robert G.
Palgrave
,
Robin
Perry
,
David O.
Scanlon
Diamond Proposal Number(s):
[24449]
Open Access
Abstract: Transparent conducting oxides have become ubiquitous in modern optoelectronics. However, the number of oxides that are transparent to visible light and have the metallic-like conductivity necessary for applications is limited to a handful of systems that have been known for the past 40 years. In this work, we use hybrid density functional theory and defect chemistry analysis to demonstrate that tri-rutile zinc antimonate, ZnSb2O6, is an ideal transparent conducting oxide and to identify gallium as the optimal dopant to yield high conductivity and transparency. To validate our computational predictions, we have synthesized both powder samples and single crystals of Ga-doped ZnSb2O6 which conclusively show behavior consistent with a degenerate transparent conducting oxide. This study demonstrates the possibility of a family of Sb(V)-containing oxides for transparent conducting oxide and power electronics applications.
|
Oct 2022
|
|
I05-ARPES
|
Diamond Proposal Number(s):
[13398, 5282]
Open Access
Abstract: Discrepancies in the low-energy quasiparticle dispersion extracted from angle-resolved photoemission, scanning tunneling spectroscopy, and quantum oscillation data are common and have long haunted the field of quantum matter physics. Here, we directly test the consistency of results from these three techniques by comparing data from the correlated metal Sr2RhO4. Using established schemes for the interpretation of the experimental data, we find good agreement for the Fermi surface topography and carrier effective masses. Hence, the apparent absence of such an agreement in other quantum materials, including the cuprates, suggests that the electronic states in these materials are of different, non-Fermi liquid-like nature. Finally, we discuss the potential and challenges in extracting carrier lifetimes from photoemission and quasiparticle interference data.
|
Dec 2020
|
|
I16-Materials and Magnetism
|
C. D.
Dashwood
,
L. S. I.
Veiga
,
Q.
Faure
,
J. G.
Vale
,
D. G.
Porter
,
S. P.
Collins
,
P.
Manuel
,
D. D.
Khalyavin
,
F.
Orlandi
,
R. S.
Perry
,
R. D.
Johnson
,
D. F.
Mcmorrow
Diamond Proposal Number(s):
[23580]
Abstract: We show how complex modulated order can spontaneously emerge when magnetic interactions compete in a metal with polar lattice distortions. Combining neutron and resonant x-ray scattering with symmetry analysis, we reveal that the spin reorientation in
Ca
3
Ru
2
O
7
is mediated by a magnetic cycloid whose eccentricity evolves smoothly but rapidly with temperature. We find the cycloid to be highly sensitive to magnetic fields, which appear to continuously generate higher harmonic modulations. Our results provide a unified picture of the rich magnetic phases of this correlated, multiband polar metal.
|
Nov 2020
|
|
I16-Materials and Magnetism
|
Diamond Proposal Number(s):
[7798, 12911]
Open Access
Abstract: X-ray magnetic critical scattering measurements and specific heat measurements were performed on the perovskite iridate Sr3Ir2O7. We find that the magnetic interactions close to the Néel temperature Tn = 283.4(2) K are three-dimensional. This contrasts with previous studies which suggest two-dimensional behaviour like Sr2IrO4. Violation of the Harris criterion (dv > 2) means that weak disorder becomes relevant. This leads a rounding of the antiferromagnetic phase transition at Tn, and modifies the critical exponents relative to the clean system. Specifically, we determine that the critical behaviour of Sr2Ir2O7 is representative of the diluted 3D Ising universality class.
|
May 2019
|
|
I16-Materials and Magnetism
|
Diamond Proposal Number(s):
[14024]
Open Access
Abstract: We study the magnetic structure of the “stuffed” (Tb-rich) pyrochlore iridate Tb2+xIr2−xO7−y, using resonant elastic x-ray scattering (REXS). In order to disentangle contributions from Tb and Ir magnetic sublattices, experiments were performed at the Ir L3 and Tb M5 edges, which provide selective sensitivity to Ir 5d and Tb 4f magnetic moments, respectively. At the Ir L3 edge, we found the onset of long-range k = 0 magnetic order below TIr N ∼71K, consistent with the expected signal of all-in all-out (AIAO) magnetic order. Using a single-ion model to calculate REXS crosssections, we estimate an ordered magnetic moment of µIr 5d ≈ 0.34(3)µB at 5K. At the Tb M5 edge,long-range k = 0 magnetic order appeared below ∼ 40K, also consistent with an AIAO magnetic structure on the Tb site. Additional insight into the magnetism of the Tb sublattice is gleaned from measurements at the M5 edge in applied magnetic fields up to 6T, which is found to completely suppress the Tb AIAO magnetic order. In zero applied field, the observed gradual onset of the Tb sublattice magnetisation with temperature suggests that it is induced by the magnetic order on the Ir site. The persistence of AIAO magnetic order, despite the greatly reduced ordering temperature and moment size compared to stoichiometric Tb2Ir2O7, for which TIr N = 130K and µIr 5d = 0.56µB, indicates that stuffing could be a viable means of tuning the strength of electronic correlations, thereby potentially offering a new strategy to achieve topologically non-trivial band crossings in pyrochlore iridates.
|
May 2019
|
|
I10-Beamline for Advanced Dichroism
|
Abstract: The ground-state orbital occupancy of the Ru4+ ion in Ca2−xLaxRuO4[x=0, 0.05(1), 0.07(1), and 0.12(1)] was investigated by performing x-ray absorption spectroscopy (XAS) in the vicinity of the O K edge as a function of the angle between the incident beam and the surface of the single-crystal samples. A minimal model of the hybridization between the O 2p states probed at the K edge and the Ru 4d orbitals was used to analyze the XAS data, allowing the ratio of hole occupancies nxy/nyz,zx to be determined as a function of doping and temperature. For the samples displaying a low-temperature insulating ground state (x≤0.07), nxy/nyz,zx is found to increase significantly with increasing doping, with increasing temperature acting to further enhance nxy/nyz,zx. For the x=0.12 sample, which has a metallic ground state, the XAS spectra are found to be independent of temperature and not to be describable by the minimal hybridization model, while being qualitatively similar to the spectra displayed by the x≤0.07 samples above their insulating to metallic transitions. To understand the origin of the evolution of the electronic structure of Ca2−xLaxRuO4 across its phase diagram, we have performed theoretical calculations based on a model Hamiltonian, comprising electron-electron correlations, crystal field Δ, and spin-orbit coupling λ, of a Ru-O-Ru cluster, with realistic values used to parametrize the various interactions taken from the literature. Our calculations of the Ru hole occupancy as a function of Δ/λ provide an excellent description of the general trends displayed by the data. In particular they establish that the enhancement of nxy/nyz,zx is driven by significant modifications to the crystal field as the tetragonal distortion of the RuO6 octahedral changes from compressive to tensile with La doping. We have also used our model to show that the hole occupancy of the O 2p and Ru 4d orbitals displays the same general trend as a function of Δ/λ, thus validating the minimal hybridization model used to analyze the data. In essence, our results suggest that the predominant mechanism driving the emergence of the low-temperature metallic phase in La-doped Ca2RuO4 is the structurally induced redistribution of holes within the t2g orbitals, rather than the injection of free carriers.
|
Feb 2019
|
|
I16-Materials and Magnetism
|
D.
Pincini
,
S.
Boseggia
,
R.
Perry
,
Ma. J.
Gutmann
,
S.
Ricco
,
L. S. I.
Veiga
,
C. D.
Dashwood
,
S. P.
Collins
,
G.
Nisbet
,
A.
Bombardi
,
D. G.
Porter
,
F.
Baumberger
,
A. T.
Boothroyd
,
D. F.
Mcmorrow
Diamond Proposal Number(s):
[15323, 15952, 15867, 18934]
Abstract: The chemical and magnetic structures of the series of compounds Ca2−xLaxRuO4 [x=0, 0.05(1), 0.07(1), 0.12(1)] have been investigated using neutron diffraction and resonant elastic x-ray scattering. Upon La doping, the low-temperature S-Pbca space group of the parent compound is retained in all insulating samples [x≤0.07(1)], but with significant changes to the atomic positions within the unit cell. These changes can be characterized in terms of the local
RuO6 octahedral coordination: with increasing doping, the structure, crudely speaking, evolves from an orthorhombic unit cell with compressed octahedra to a quasitetragonal unit cell with elongated ones. The magnetic structure on the other hand, is found to be robust, with the basic k=(0,0,0), b-axis antiferromagnetic order of the parent compound preserved below the critical La doping concentration of x≈0.11. The only effects of La doping on the magnetic structure are to suppress the A-centred mode, favoring the B mode instead, and to reduce the Néel temperature somewhat. Our results are discussed with reference to previous experimental reports on the effects of cation substitution on the d4 Mott insulator Ca2RuO4, as well as with regard to theoretical studies on the evolution of its electronic and magnetic structure. In particular, our results rule out the presence of a proposed ferromagnetic phase, and suggest that the structural effects associated with La substitution play an important role in the physics of the system.
|
Jul 2018
|
|
I15-Extreme Conditions
|
Christian
Donnerer
,
Zhuo
Feng
,
J. G.
Vale
,
S. N.
Andreev
,
I. V.
Solovyev
,
Emily
Hunter
,
M.
Hanfland
,
Robin
Perry
,
H. M.
Rønnow
,
Malcolm
Mcmahon
,
V. V.
Mazurenko
,
Des
Mcmorrow
Diamond Proposal Number(s):
[8790]
Abstract: We study the structural evolution of Sr3Ir2O7 as a function of pressure using x-ray diffraction. At a pressure of 54 GPa at room temperature, we observe a first-order structural phase transition, associated with a change from tetragonal to monoclinic symmetry and accompanied by a 4% volume collapse. Rietveld refinement of the high-pressure phase reveals a novel modification of the Ruddlesden-Popper structure, which adopts an altered stacking sequence of the perovskite bilayers. As the positions of the oxygen atoms could not be reliably refined from the data, we use density functional theory (local-density approximation+U+spin orbit) to optimize the crystal structure and to elucidate the electronic and magnetic properties of Sr3Ir2O7 at high pressure. In the low-pressure tetragonal phase, we find that the in-plane rotation of the IrO6 octahedra increases with pressure. The calculations further indicate that a bandwidth-driven insulator-metal transition occurs at ∼20 GPa, along with a quenching of the magnetic moment. In the high-pressure monoclinic phase, structural optimization resulted in complex tilting and rotation of the oxygen octahedra and strongly overlapping t2g and eg bands. The t2g bandwidth renders both the spin-orbit coupling and electronic correlations ineffectual in opening an electronic gap, resulting in a robust metallic state for the high-pressure phase of Sr3Ir2O7.
|
May 2016
|
|
I16-Materials and Magnetism
|
Diamond Proposal Number(s):
[8407]
Abstract: Sr2IrO4 is a prototype of the class of Mott insulators in the strong spin–orbit interaction (SOI) limit described by a Jeff = 1/2 ground state. In Sr2IrO4, the strong SOI is predicted to manifest itself in the locking of the canting of the magnetic moments to the correlated rotation by 11.8(1)° of the oxygen octahedra that characterizes its distorted layered perovskite structure. Using x-ray resonant scattering at the Ir L3 edge we have measured accurately the intensities of Bragg peaks arising from different components of the magnetic structure. From a careful comparison of integrated intensities of peaks due to basal-plane antiferromagnetism, with those due to b-axis ferromagnetism, we deduce a canting of the magnetic moments of 12.2(8)°. We thus confirm that in Sr2IrO4 the magnetic moments rigidly follow the rotation of the oxygen octahedra, indicating that, even in the presence of significant non-cubic structural distortions, it is a close realization of the Jeff = 1/2 state.
|
Oct 2013
|
|