B18-Core EXAFS
|
Abstract: Herein, we report a simple synthesis of PtNiCo trimetallic nanoparticles (NPs) loaded on carbon black (PtNiCo/C) via ambient-temperature chemical reduction and galvanic replacement reaction. The influence of thermal treatment temperature in 10%H2/N2 on PtNiCo NPs in PtNiCo/C-X nanostructures is revealed, where, X = 200 °C, 500 °C. XRD, XPS, TEM, HAADF-STEM, HRTEM, STEM-EDX elemental line-scanning (mapping), HS-LEIS, H2-TPR, atomic resolution aberration-corrected STEM (AC-STEM), XANES and EXAFS have been employed to characterize various nanostructures of PtNiCo NPs in PtNiCo/C-X. We established the relationship of nanostructure-reducing temperature thus catalytic behavior of PtNiCo/C-X: PtNiCo/C-200∼Pt island (single atom and cluster)-on-NiCo alloy NP, PtNiCo/C-500∼PtNiCo alloy NPs. PtNiCo/C-200 provides much improved catalytic activity and selectivity to target products (-NO2 group hydrogenation) as compared to PtNiCo/C-500 for nitroarenes selective hydrogenation under mild reaction conditions (1.0 MPa-H2 pressure, 18 °C or 40 °C-reaction temperature). That is considered to be closely correlated with the synergy effect of Pt islands and NiCo alloy nanoparticles in PtNiCo/C-200.
|
Aug 2022
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[29684]
Abstract: A Pt–Ni–Co catalyst was synthesized with Pt single atoms and atomic clusters (SAACs) dispersed over (Ni,Co)(OH)2 nanoparticles on a carbon matrix, which leads to high catalytic activity, up to 100% conversion, and selectivity in the hydrogenation of nitroaromatics under moderate conditions (H2 ∼ 1.0 MPa and ≤40 °C). A synergistically coordinated ensemble effect of the Pt SAACs is identified with the strongly polarized Pt single atoms preferentially adsorbing the −NO2 and the Pt clusters adsorbing and homolytically dissociating H2 molecules, and the H species then readily move to the adsorbed −NO2 group, overcoming a much reduced energy barrier on the (Ni,Co)(OH)2, enhancing the reaction rate by ca. 50 times. The approach not only reveals the coordinated ensemble catalysis mechanism of SAACs but also provides a strategy of developing highly efficient and selective catalysts by fine tuning of the electronic microenvironment from single atoms to atomic clusters co-located over a multimetallic substrate. The demonstrated case for nitroarenes can be readily applied for other species containing −NO2 or other easily hydrogenated groups (such as C═C, C≡N, and C═O).
|
Jun 2022
|
|
B18-Core EXAFS
|
Miren
Agote-Aran
,
Anna B.
Kroner
,
David S.
Wragg
,
Wojciech A.
Sławiński
,
Martha
Briceno
,
Husn U.
Islam
,
Igor V.
Sazanovich
,
María E.
Rivas
,
Andrew W. J.
Smith
,
Paul
Collier
,
Ines
Lezcano-Gonzalez
,
Andrew M.
Beale
Diamond Proposal Number(s):
[11623]
Open Access
Abstract: Small pore zeolites have shown great potential in a number of catalytic reactions. While Mo-containing medium pore zeolites have been widely studied for methane dehydroaromatisation (MDA), the use of small pore supports has drawn limited attention due to the fast deactivation of the catalyst. This work investigates the structure of the small pore Mo/H-SSZ-13 during catalyst preparation and reaction by operando X-ray absorption spectroscopy (XAS), in situ synchrotron powder diffraction (SPD), and electron microscopy; then, the results are compared with the medium pore Mo/H-ZSM-5. While SPD suggests that during catalyst preparation, part of the MoOx anchors inside the pores, Mo dispersion and subsequent ion exchange was less effective in the small pore catalyst, resulting in the formation of mesopores and Al2(MOO4)3 particles. Unlike Mo/H-ZSM-5, part of the Mo species in Mo/H-SSZ-13 undergoes full reduction to Mo0 during MDA, whereas characterisation of the spent catalyst indicates that differences also exist in the nature of the formed carbon deposits. Hence, the different Mo speciation and the low performance on small pore zeolites can be attributed to mesopores formation during calcination and the ineffective ion exchange into well dispersed Mo-oxo sites. The results open the scope for the optimisation of synthetic routes to explore the potential of small pore topologies.
|
Nov 2020
|
|
B18-Core EXAFS
|
Andrew M.
Beale
,
Miren
Agote-Aran
,
Rachel E.
Fletcher
,
Martha
Briceno
,
Anna B.
Kroner
,
Igor V.
Sazanov
,
Ben
Slater
,
María E.
Rivas
,
Andrew W. J.
Smith
,
Paul
Collier
,
Ines
Lezcano-Gonzalez
Diamond Proposal Number(s):
[11623]
Abstract: The structure and activity of Mo/Silicalite‐1 (MFI, Si/Al = ∞) were compared to Mo/H‐ZSM‐5 (MFI, Si/Al = 15), a widely studied catalyst for methane dehydroaromatisation (MDA). The anchoring mode of Mo was evaluated by in situ X‐ray absorption spectroscopy (XAS) and density functional theory (DFT). The results showed that in Mo/Silicalite‐1, calcination leads to dispersion of MoO3 precursor into tetrahedral Mo‐oxo species in close proximity to the microporous framework. A weaker interaction of the Mo‐oxo species with the Silicalite‐1 was determined by XAS and DFT. While both catalysts are active for MDA, Mo/Silicalite‐1 undergoes rapid deactivation which was attributed to a faster sintering of Mo species leading to the accumulation of carbon deposits on the zeolite outer surface. The results shed light onto the nature of the Mo structure(s) while evidencing the importance of framework Al in stabilising active Mo species under MDA conditions.
|
Sep 2019
|
|
B18-Core EXAFS
I20-EDE-Energy Dispersive EXAFS (EDE)
|
Ellie K.
Dann
,
Emma K.
Gibson
,
C. Richard A.
Catlow
,
Veronica
Celorrio
,
Paul
Collier
,
Tugce
Eralp
,
Monica
Amboage
,
Christopher
Hardacre
,
Cristina
Stere
,
Anna
Kroner
,
Agnes
Raj
,
Scott
Rogers
,
Alexandre
Goguet
,
Peter P.
Wells
Diamond Proposal Number(s):
[17340, 17725]
Open Access
Abstract: Spatially resolved, combined energy dispersive EXAFS (EDE) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements have been performed over a fixed catalyst bed of Pd/γ-Al2O3 during kinetic oscillations of CO oxidation. The kinetic oscillations of CO oxidation over Pd (or for that matter Pt or Rh) catalysts are a complicated phenomenon that require characterisation techniques with high time resolution and spatial resolution in order to make links between catalyst structure and surface reactivity. By measuring the extent of Pd oxidation at the nanoparticle surface, from Pd K-edge EDE, and matching this with the CO coverage, from DRIFTS spectra, at multiple positions of the fixed bed reactor it is found that the majority of the catalyst undergoes a sharp transition from the CO poisoned catalyst to the highly active, oxidised Pd surface. This transition occurs initially at the end of the catalyst bed, nearest the outlet, and propagates upstream with increasing temperature of the reactor. The oscillations in Pd surface oxide formation and CO coverage are observed only in the first ∼1 mm of the bed, which gives rise to oscillations in CO2 and O2 concentrations observed by end-pipe mass spectrometry after the light-off temperature. The catalyst initially exists as less active, CO poisoned metallic Pd nanoparticles before light-off which transition to a highly active state after light-off when the Pd nanoparticle surface becomes dominated by chemisorbed oxygen. Kinetic oscillations only occur at the front of the catalyst bed where there is sufficient concentration of CO in the gas phase to compete with O2 for adsorption sites at the catalyst surface. We demonstrate the complex nature of the evolving catalyst structure and surface reactivity during catalytic operation and the need for spatially resolved operando methods for understanding and optimising catalyst technologies.
|
May 2019
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[15850, 14673]
Open Access
Abstract: Herein, we designed a versatile cell for operando X-ray absorption spectroscopy (XAS) monitoring of chemical and physical transformations in liquid solutions and dispersions by fluorescence-yield detection. The cell operates under atmospheric pressure, and the composition of the gas phase can be varied, allowing monitoring of gas–liquid reactions. Samples can be examined as a flowing liquid-jet or as a sessile droplet. Both liquid-jet and droplet operations of the cell were demonstrated at the Ca K-edge through time-resolved studies of CaCO3 formation from CO2 and solid Ca(OH)2 in an aqueous suspension. The liquid-jet reaction was performed at 28 °C, and the droplet reaction was performed at ambient temperature, but both configurations had the scope to be modified for operations at higher temperatures. The liquid-jet volumes were recycled, permitting the use of the cell in a continuous sampling loop for process studies in larger reactor vessels. The jet supply tube was interchangeable, permitting adjustment of the jet size through the tubing bore size. Larger bore sizes minimized the pressure drop at the nozzle and thereby the risk of blockage of the liquid supply by the suspended particulates or growth of solid deposits. Sessile droplet operation enabled studies with minimal sample volumes and mechanical disturbances under controlled environmental conditions. The cell is portable and modular and is based on readily available standard vacuum equipment parts. Furthermore, the operation under a He atmosphere allows measurements above 4 keV, covering part of the tender X-ray range, and it is also applicable to the hard X-ray range.
|
Mar 2019
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[9925]
Open Access
Abstract: Fe-containing zeolites were studied as catalysts for the standard NH3-SCR reaction with the primary aim of gaining insight into the structure-function relationship of these materials. Catalysts with different Fe nuclearity (i.e. isolated species, clusters, large particles) were synthesised by incipient wetness impregnation, using H-ZSM-5, H-SSZ-13 and Silicalite-1 as supports, and characterised by in situ and operando X-ray emission spectroscopy (XES) and high energy resolution fluorescence detected X-ray absorption near-edge spectroscopy (HERFD-XANES) under NH3-SCR conditions. The combination of these techniques allowed us to obtain a detailed understanding of the changes in Fe coordination, oxidation state and geometry occurring during reaction. The results obtained suggested that isolated octahedral Fe3+ species on H-ZSM-5 are highly active under the conditions studied, undergoing reduction when exposed to NH3 or under SCR conditions. In contrast, isolated tetrahedral Fe3+ sites present in Silicalite-1 exhibited lower redox properties, leading to a reduced NO conversion. Clusters and FexOy particles on H-SSZ-13 exhibited low SCR activity.
|
Nov 2018
|
|
|
Open Access
Abstract: X-ray Raman scattering (XRS) has been used for in situ probing of solute molecule speciation in solution during cooling crystallization. The C and N K-edges of aqueous imidazole were measured as a function of temperature to monitor the transition from the undersaturated state through supersaturation to crystallization. A new jacketed-vessel crystallizer with internal flow was used, which enables thermal control and minimizes radiation damage. We have demonstrated that the C and N K-edges of imidazole are sensitive to changes in local bonding. In line with this, an abrupt change in the N K-edge fine structure indicates the onset of desolvation and crystallization from the supersaturated solution. In contrast, negligible changes are observed in the C and N K-edge spectra acquired during cooling, indicating that the average solvation structure around imidazole molecules does not change significantly while traversing the thermodynamically metastable supersaturated zone. To the best of our knowledge this is the first time X-ray Raman scattering has been used for studying molecular speciation in organic aqueous solutions during crystallization. Time-dependent density functional theory (TD-DFT) calculations of the near-edge spectra were performed using implicit, explicit and combined solvation models to elucidate the likely binding sites of the water molecules. An explicit solvation model with one water molecule coordinating each nitrogen moiety in the imidazole ring accurately reproduces the peak positions and intensities of the XRS spectra of aqueous imidazole solution.
|
Sep 2018
|
|
B18-Core EXAFS
|
Abstract: Mo‐H‐ZSM‐5 has been studied using a combination of operando X‐ray absorption spectroscopy and High Resolution Powder X‐ray diffraction in order to study the evolution of Mo species and their location within the zeolite pores. The results indicate that after calcination the majority of the species present are isolated Mo‐oxo species, attached to the zeolite framework at the straight channels. During reaction, Mo is first partially carburized to intermediate MoCxOy species. At longer reaction times Mo fully carburizes detaching from the zeolite and aggregate forming initial Mo1.6C3 clusters; this is coincident with maximum benzene production. The Mo1.6C3 clusters are then observed to grow, predominantly on the outer zeolite surface and this appears to be the primary cause of catalyst deactivation. The deactivation is not only due to a decrease in the amount of active Mo surface but also due to a loss in shape‐selectivity which leads to an increased carbon deposition at the outer shell of the zeolite crystals and eventually to pore blockage.
|
Sep 2018
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[12263]
Abstract: The multi-metallic nanocatalysts of ruthenium nanoclusters-on-transition metal/transition metal oxide nanoparticles (TM/TMO NPs) then supported on carbon (Ru/Ni/NiO/C or Ru/Co/Co3O4/C) were designed and synthesized. The Ni/NiO or Co/Co3O4 NPs strongly stabalized the ruthenium nanoclusters by the interfacial interaction among them. These catalysts exhibited high catalytic activity and 100% selectivity to decalin for naphthalene hydrogenation due to the synergy effect of multiple catalytic sites, where naphthalene was absorbed and activated at the TMO sites (NiO or Co3O4), H2 was activated at the Ru sites and it produced the activated H* species, H* was transferred to the surface of NiO or Co3O4 by the hydrogen spillover effect of TM (Ni or Co), reacting with the activated naphthalene and forming decalin. The nanostructures and synergetic effect of the Ru/Ni/NiO/C and Ru/Co/Co3O4/C catalysts were revealed by a series of techniques, such as high-resolution transmission electron microscope (HRTEM), temperature-programmed reduction (TPR), scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) mapping, high-sensitivity low-energy ion scattering (HS-LEIS) and X-ray absorption spectroscopy (XAS). It is promising that the hydrogen storage can proceed at room temperature via catalyzing naphthalene hydrogenation over the Ru/Ni/NiO/C or Ru/Co/Co3O4/C catalyst.
|
Jun 2018
|
|