I12-JEEP: Joint Engineering, Environmental and Processing
|
Open Access
Abstract: Despite being one of the most thoroughly characterised molecular crystals, hexamethylenetetramine (HMT) and its deuterated counterpart (DHMT), are still not fully understood, especially regarding anharmonic and nuclear quantum effects. In this work, an unprecedented combination of experimental techniques, including neutron and X-ray diffraction, inelastic neutron scattering, neutron transmission, and Compton scattering, all augmented ab initio by harmonic lattice dynamics calculations, was applied. The main question that motivated the presented work was the interplay between the phonon anharmonicity and isotope and nuclear quantum effects related to the zero-point energies of proton and deuteron. Signatures of the combined effects of isotopic substitution, temperature, anharmonicity and nuclear quantum effects were found in data from all experimental methods. In the case of neutron and X-ray diffraction, these signatures manifested as systematic discrepancies between the structural and atomic displacement parameters and thermal diffuse scattering obtained from harmonic lattice calculations and their experimental counterparts. To this end, an important effect was found that could not have been explained by the harmonic lattice modelling; the reverse Ubbelohde effect, i.e. the observation that deuteration decreases hydrogen bond length in HMT. In the case of neutron transmission, further discrepancies between theoretical predictions and experimental data were found at cryogenic temperatures. Finally, applying the diabatic theory of the local potential of the intermolecular hydrogen bond in HMT, it was possible to elucidate the degree of anharmonicity of the C–H···N bonds by relating it to the magnitude of the vibrational isotope effect for the C–H bond stretching observed in inelastic and neutron Compton scattering experiments. It was found that the combined nuclear quantum and anharmonic effects of the protons (deuterons) in hydrogen bonds in HMT (DHMT) manifest as systematic discrepancies between the ab initio predictions for the widths of nuclear momentum distributions and the experimental values.
|
Jan 2023
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Lixia
Guo
,
Xue
Han
,
Yujie
Ma
,
Jiangnan
Li
,
Wanpeng
Lu
,
Weiyao
Li
,
Daniel
Lee
,
Ivan
Da Silva
,
Yongqiang
Cheng
,
Svemir
Rudic
,
Pascal
Manuel
,
Mark D.
Frogley
,
Anibal Javier
Ramirez-Cuesta
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[30398]
Open Access
Abstract: To understand the exceptional adsorption of ammonia (NH3) in MFM-300(Sc) (19.5 mmol g−1 at 273 K and 1 bar without hysteresis), we report a systematic investigation of the mechanism of adsorption by a combination of in situ neutron powder diffraction, inelastic neutron scattering, synchrotron infrared microspectroscopy, and solid-state 45Sc NMR spectroscopy. These complementary techniques reveal the formation of reversible host-guest supramolecular interactions, which explains directly the observed excellent reversibility of this material over 90 adsorption-desorption cycles.
|
Apr 2022
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Xue
Han
,
Wanpeng
Lu
,
Yinlin
Chen
,
Ivan
Da Silva
,
Jiangnan
Li
,
Longfei
Lin
,
Weiyao
Li
,
Alena M.
Sheveleva
,
Harry G. W.
Godfrey
,
Zhenzhong
Lu
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Yongqiang
Cheng
,
Luke L.
Daemen
,
Laura J.
Mccormick Mcpherson
,
Simon J.
Teat
,
Mark D.
Frogley
,
Svemir
Rudic
,
Pascal
Manuel
,
Anibal J.
Ramirez-Cuesta
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[23782]
Abstract: Ammonia (NH3) is a promising energy resource owing to its high hydrogen density. However, its widespread application is restricted by the lack of efficient and corrosion-resistant storage materials. Here, we report high NH3 adsorption in a series of robust metal–organic framework (MOF) materials, MFM-300(M) (M = Fe, V, Cr, In). MFM-300(M) (M = Fe, VIII, Cr) show fully reversible capacity for >20 cycles, reaching capacities of 16.1, 15.6, and 14.0 mmol g–1, respectively, at 273 K and 1 bar. Under the same conditions, MFM-300(VIV) exhibits the highest uptake among this series of MOFs of 17.3 mmol g–1. In situ neutron powder diffraction, single-crystal X-ray diffraction, and electron paramagnetic resonance spectroscopy confirm that the redox-active V center enables host–guest charge transfer, with VIV being reduced to VIII and NH3 being oxidized to hydrazine (N2H4). A combination of in situ inelastic neutron scattering and DFT modeling has revealed the binding dynamics of adsorbed NH3 within these MOFs to afford a comprehensive insight into the application of MOF materials to the adsorption and conversion of NH3.
|
Feb 2021
|
|
I11-High Resolution Powder Diffraction
I20-EDE-Energy Dispersive EXAFS (EDE)
|
Longfei
Lin
,
Mengtian
Fan
,
Alena M.
Sheveleva
,
Xue
Han
,
Zhimou
Tang
,
Joseph H.
Carter
,
Ivan
Da Silva
,
Christopher
Parlett
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
German
Sastre
,
Svemir
Rudic
,
Hamish
Cavaye
,
Stewart F.
Parker
,
Yongqiang
Cheng
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuesta
,
Martin P.
Attfield
,
Yueming
Liu
,
Chiu C.
Tang
,
Buxing
Han
,
Sihai
Yang
Diamond Proposal Number(s):
[2359]
Open Access
Abstract: Optimising the balance between propene selectivity, propene/ethene ratio and catalytic stability and unravelling the explicit mechanism on formation of the first carbon–carbon bond are challenging goals of great importance in state-of-the-art methanol-to-olefin (MTO) research. We report a strategy to finely control the nature of active sites within the pores of commercial MFI-zeolites by incorporating tantalum(V) and aluminium(III) centres into the framework. The resultant TaAlS-1 zeolite exhibits simultaneously remarkable propene selectivity (51%), propene/ethene ratio (8.3) and catalytic stability (>50 h) at full methanol conversion. In situ synchrotron X-ray powder diffraction, X-ray absorption spectroscopy and inelastic neutron scattering coupled with DFT calculations reveal that the first carbon–carbon bond is formed between an activated methanol molecule and a trimethyloxonium intermediate. The unprecedented cooperativity between tantalum(V) and Brønsted acid sites creates an optimal microenvironment for efficient conversion of methanol and thus greatly promotes the application of zeolites in the sustainable manufacturing of light olefins.
|
Feb 2021
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Jiangnan
Li
,
Zhengyang
Zhou
,
Xue
Han
,
Xinran
Zhang
,
Yong
Yan
,
Weiyao
Li
,
Gemma L.
Smith
,
Yongqiang
Cheng
,
Laura J.
Mcormick Mpherson
,
Simon J.
Teat
,
Mark D.
Frogley
,
Svemir
Rudic
,
Anibal J.
Ramirez-Cuesta
,
Alexander J.
Blake
,
Junliang
Sun
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[22137]
Open Access
Abstract: Structural transitions of host systems in response to guest binding dominate many chemical processes. We report an unprecedented type of structural flexibility within a meta-rigid material, MFM-520, which exhibits a reversible periodic-to-aperiodic structural transition resulting from a drastic distortion of a [ZnO4N] node controlled by the specific host–guest interactions. The aperiodic crystal structure of MFM-520 has no three-dimensional (3D) lattice periodicity but shows translational symmetry in higher-dimensional (3 + 2)D space. We have directly visualized the aperiodic state which is induced by incommensurate modulation of the periodic framework of MFM-520·H2O upon dehydration to give MFM-520. Filling MFM-520 with CO2 and SO2 reveals that, while CO2 has a minimal structural influence, SO2 can further modulate the structure incommensurately. MFM-520 shows exceptional selectivity for SO2 under flue-gas desulfurization conditions, and the facile release of captured SO2 from MFM-520 enabled the conversion to valuable sulfonamide products. MFM-520 can thus be used as a highly efficient capture and delivery system for SO2.
|
Oct 2020
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Longfei
Lin
,
Alena M.
Sheveleva
,
Ivan
Da Silva
,
Christopher M. A.
Parlett
,
Zhimou
Tang
,
Yueming
Liu
,
Mengtian
Fan
,
Xue
Han
,
Joseph H.
Carter
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Yongqiang
Cheng
,
Luke L.
Daemen
,
Svemir
Rudic
,
Anibal J.
Ramirez-Cuesta
,
Chiu C.
Tang
,
Sihai
Yang
Diamond Proposal Number(s):
[15151, 24726]
Abstract: The efficient production of light olefins from renewable biomass is a vital and challenging target to achieve future sustainable chemical processes. Here we report a hetero-atomic MFI-type zeolite (NbAlS-1), over which aqueous solutions of γ-valerolactone (GVL), obtained from biomass-derived carbohydrates, can be quantitatively converted into butenes with a yield of >99% at ambient pressure under continuous flow conditions. NbAlS-1 incorporates simultaneously niobium(v) and aluminium(iii) centres into the framework and thus has a desirable distribution of Lewis and Brønsted acid sites with optimal strength. Synchrotron X-ray diffraction and absorption spectroscopy show that there is cooperativity between Nb(v) and the Brønsted acid sites on the confined adsorption of GVL, whereas the catalytic mechanism for the conversion of the confined GVL into butenes is revealed by in situ inelastic neutron scattering, coupled with modelling. This study offers a prospect for the sustainable production of butene as a platform chemical for the manufacture of renewable materials.
|
Dec 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Gemma L.
Smith
,
Jennifer E.
Eyley
,
Xue
Han
,
Xinran
Zhang
,
Jiangnan
Li
,
Nicholas M.
Jacques
,
Harry G. W.
Godfrey
,
Stephen P.
Argent
,
Laura J.
Mccormick Mcpherson
,
Simon J.
Teat
,
Yongqiang
Cheng
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Sarah
Day
,
Chiu C.
Tang
,
Timothy L.
Easun
,
Svemir
Rudic
,
Anibal J.
Ramirez-Cuesta
,
Sihai
Yang
,
Martin
Schroeder
Abstract: Emissions of SO2 from flue gas and marine transport have detrimental impacts on the environment and human health, but SO2 is also an important industrial feedstock if it can be recovered, stored and transported efficiently. Here we report the exceptional adsorption and separation of SO2 in a porous material, [Cu2(L)] (H4L = 4′,4‴-(pyridine-3,5-diyl)bis([1,1′-biphenyl]-3,5-dicarboxylic acid)), MFM-170. MFM-170 exhibits fully reversible SO2 uptake of 17.5 mmol g−1 at 298 K and 1.0 bar, and the SO2 binding domains for trapped molecules within MFM-170 have been determined. We report the reversible coordination of SO2 to open Cu(ii) sites, which contributes to excellent adsorption thermodynamics and selectivities for SO2 binding and facile regeneration of MFM-170 after desorption. MFM-170 is stable to water, acid and base and shows great promise for the dynamic separation of SO2 from simulated flue gas mixtures, as confirmed by breakthrough experiments.
|
Oct 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Xinchen
Kang
,
Kai
Lyu
,
Lili
Li
,
Jiangnan
Li
,
Louis
Kimberley
,
Bin
Wang
,
Lifei
Liu
,
Yongqiang
Cheng
,
Mark D.
Frogley
,
Svemir
Rudic
,
Anibal J.
Ramirez-Cuesta
,
Robert A. W.
Dryfe
,
Buxing
Han
,
Sihai
Yang
,
Martin
Schroder
Diamond Proposal Number(s):
[19171]
Open Access
Abstract: Incorporation of mesopores and active sites into metal-organic framework (MOF) materials to uncover new efficient catalysts is a highly desirable but challenging task. We report the first example of a mesoporous MOF obtained by templated electrosynthesis using an ionic liquid as both electrolyte and template. The mesoporous Cu(II)-MOF MFM-100 has been synthesised in 100 seconds at room temperature, and this material incorporates crystal defects with uncoupled Cu(II) centres as evidenced by confocal fluorescence microscopy and electron paramagnetic resonance spectroscopy. MFM-100 prepared in this way shows exceptional catalytic activity for the aerobic oxidation of alcohols to produce aldehydes in near quantitative yield and selectivity under mild conditions, as well as having excellent stability and reusability over repeated cycles. The catalyst-substrate binding interactions have been probed by inelastic neutron scattering. This study offers a simple strategy to create mesopores and active sites simultaneously via electrochemical formation of crystal defects to promote efficient catalysis using MOFs.
|
Oct 2019
|
|
I11-High Resolution Powder Diffraction
|
Open Access
Abstract: Stimuli-responsive behaviors of flexible metal–organic frameworks (MOFs) make these materials promising in a wide variety of applications such as gas separation, drug delivery, and molecular sensing. Considerable efforts have been made over the last decade to understand the structural changes of flexible MOFs in response to external stimuli. Uniform pore deformation has been used as the general description. However, recent advances in synthesizing MOFs with non-uniform porous structures, i.e. with multiple types of pores which vary in size, shape, and environment, challenge the adequacy of this description. Here, we demonstrate that the CO2-adsorption-stimulated structural change of a flexible MOF, ZIF-7, is induced by CO2 migration in its non-uniform porous structure rather than by the proactive opening of one type of its guest-hosting pores. Structural dynamics induced by guest migration in non-uniform porous structures is rare among the enormous number of MOFs discovered and detailed characterization is very limited in the literature. The concept presented in this work provides new insights into MOF flexibility.
|
Mar 2019
|
|
B18-Core EXAFS
B22-Multimode InfraRed imaging And Microspectroscopy
|
Kirill
Titov
,
Dmitry
Eremin
,
Alexey S.
Kashin
,
Roberto
Boada Romero
,
Barbara
Souza
,
Chris S.
Kelley
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Diego
Gianolio
,
Giannantonio
Cibin
,
Svemir
Rudic
,
Valentine P
Ananikov
,
Jin-Chong
Tan
Diamond Proposal Number(s):
[14902, 17146]
Abstract: A catalytic system based on OX-1 metal-organic framework nanosheets is reported, incorporating catalytically active palladium (Pd) species. The Pd@OX-1 guest@host system is rapidly synthesised via a facile single-pot supramolecular assembly method, with the possibility of controlling the Pd loading. The structures of the re-sulting framework and of the active Pd species before and after catalytic reactions are studied in detail using a wide variety of techniques including synchrotron radiation infrared spectroscopy, inelastic neutron scattering and X-ray absorption spectroscopy. Crystals of the resulting Pd@OX-1 composite material contain predomi-nantly atomic and small cluster Pd species, which selectively reside on benzene rings of the benzenedicarbox-ylate (BDC) linkers. The composites are shown to efficiently catalyse the Suzuki coupling and Heck arylation reactions under a variety of conditions. Pd@OX-1 further shows potential to be recycled for at least five cycles of each reaction as well as an ability to recapture active Pd species during both catalytic reactions.
|
Feb 2019
|
|