I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[22176]
Abstract: Hypothesis: Despite the widespread industrial usage of erucamide as a slip additive to modify polymer surface properties, a controversy appears to have persisted regarding the nanostructure of erucamide surface layers, particularly the molecular orientation at the outermost layer. The erucamide nanostructure and molecular orientation, along with its surface coverage, hydrophobicity, and adhesive response, can be tuned by simply varying the erucamide concentration in the solution from which the spin coated layer is prepared. Experiments: Synchrotron X-ray reflectivity (XRR) allowed a comprehensive characterisation of the out-of-plane structural parameters (e.g. molecular packing and thickness) of the erucamide layers prepared via spin coating from nonaqueous solution on silica. Complementary Atomic Force Microscopy (AFM) imaging with high lateral resolution revealed localised in-plane structures. Contact angle measurements provided information on the wettability of erucamide-coated surfaces. Peak Force Quantitative Nanomechanical Mapping (QNM) allowed a correlation between the erucamide nanostructure with the surface nanomechanical properties (i.e. adhesive response). Findings: Our results reveal erucamide surface nanostructures on silica as patchy monolayers, isolated circular bilayers/rounded rectangle-like aggregates and overlapping plate-like multilayers as the erucamide concentration in the spin coating solution was varied. In all the cases, XRR and AFM results were consistent with the picture that the erucamide tails were oriented outwards. The QNM adhesion force mapping of all the observed morphologies also supported this molecular orientation at the outermost erucamide monolayer. The wettability study further confirmed this conclusion with the observed increase in the surface hydrophobicity and coverage upon increasing erucamide concentration, with the macroscopic water contact angle θ = 92.9° ± 2.9° at the highest erucamide concentration of 2 wt%.
|
May 2021
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[24392]
Abstract: Understanding the nanostructure and nanomechanical properties of surface layers of erucamide, in particular the molecular orientation of the outermost layer, is important to its widespread use as a slip additive in polymer materials. Extending our recent observations of nanomorphologies of erucamide layers on a hydrophilic silica substrate, here we evaluate its nanostructure on a more hydrophobic polypropylene surface. Atomic force microscopy (AFM) imaging revealed the molecular packing, thickness, and surface coverage of the erucamide layers, while peak force quantitative nanomechanical mapping (QNM) showed that erucamide reduced the adhesive response on polypropylene. Synchrotron X-ray reflectivity (XRR) was used to probe the out-of-plane structure of the surface layers. Static contact angle measurements further corroborated on the resulting wettability, also demonstrating the efficacy of erucamide physisorption in facilitating control over polypropylene surface wetting. The results show the formation of erucamide monolayers, bilayers and multilayers, depending on the concentration in the spin-cast solution. Correlation of AFM, XRR and wettability results consistently points to the molecular orientation in the outermost layer, i.e. with the erucamide tails pointing outward for the surface nanostructures with different morphologies (i.e., bilayers and multilayers). Rare occurrence of monolayers with exposed hydrophilic head groups were observed only at the lowest erucamide concentration. Compared with our previous observations on the hydrophilic surface, the erucamide surface coverage was much higher on the more hydrophobic propylene surface at similar erucamide concentrations in the spin-cast solution. Furthermore, the structure, molecular orientation and nanomechanical properties of the spin-cast erucamide multilayers atop polypropylene were also similar to those on industrially relevant polypropylene fibers coated with erucamide via blooming. These findings shed light on the nanostructural features of the erucamide surface layer underpinning its nanomechanical properties, relevant to many applications in which erucamide is commonly used as a slip additive.
|
May 2021
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[20171]
Open Access
Abstract: Glyceline, a deep eutectic solvent comprising glycerol and choline chloride, is a green nonaqueous solvent with potential industrial applications. Molecular mechanisms of surfactant self-assembly in deep eutectic solvents are expected to differ from those in their constituent polar components and are not well understood. Here we report the observation of self-assembled SDS fractal dendrites with dimensions up to ~ mm in glyceline at SDS concentrations as low as cSDS ~ 0.1 wt%. The prevalence of these dendritic fractal aggregates led to the formation of a gel phase at SDS concentrations above ≥ 1.9 wt% (the critical gelation concentration cCGC). The gel microscopic structure was visualised using polarised light microscopy (PLM); rheology measurements confirmed the formation of a colloidal gel, where the first normal stress difference was negative and the elastic modulus was dominant. Detailed nano-structural characterisation by small-angle neutron scattering (SANS) further confirmed the presence of fractal aggregates. Such SDS aggregation or gelation has not been observed in water at such low surfactant concentrations, whereas SDS has been reported to form lamellar aggregates in glycerol (a component of glyceline). We attribute the formation of the SDS fractal dendrites to the condensation of counterions (i.e. the choline ions) around the SDS aggregates - a diffusion-controlled process, leading to the aggregate morphology observed. These unprecedented results shed light on the molecular mechanisms of surfactant self-assembly in deep eutectic solvents, important to their application in industrial formulation.
|
May 2021
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[20365]
Abstract: Understanding interactions between nanoparticles and model membranes is relevant to functional nano-composites and the fundamentals of nanotoxicity. In this study, the effect of polyamidoamine (PAMAM) dendrimers as model nanoparticles (NP) on the mesophase behaviour of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) has been investigated using high-pressure small-angle X-ray scattering (HP-SAXS). The pressure-temperature (
p−T
) diagrams for POPE mesophases in excess water were obtained in the absence and presence of G2 and G4 polyamidoamine (PAMAM) dendrimers (29 Å and 45 Å in diameter, respectively) at varying NP-lipid number ratio (ν = 0.0002-0.02) over the pressure range p = 1-3000 bar and temperature range T = 20–80°C. The
p−T
phase diagram of POPE exhibited the Lβ, Lα and HII phases. Complete analysis of the phase diagrams, including the relative area pervaded by different phases, phase transition temperatures (Tt) and pressures (pt), the lattice parameters (d-spacing), the pressure-dependence of d-spacing (Δd/Δp), and the structural ordering in the mesophase as gauged by the Scherrer coherence length (L) permitted insights into the size- and concentration-dependent interactions between the dendrimers and the model membrane system. The addition of dendrimers changed the phase transition pressure and temperature and resulted in the emergence of highly swollen lamellar phases, dubbed Lβ-den and Lα-den. G4 PAMAM dendrimers at the highest concentration ν = 0.02 suppressed the formation of the HII phase within the temperature range studied, whereas the addition of G2 PAMAM dendrimers at the same concentration promoted an extended mixed lamellar region in which Lα and Lβ phases coexisted.
|
Jan 2020
|
|
|
Open Access
Abstract: Understanding the structure of polymer/surfactant mixtures at the air-water interface is of fundamental importance and also of relevance to a variety of practical applications. Here, the complexation between a neutral ’tardigrade’ comb co-polymer (consisting of a hydrophilic polyethylene glycol backbone with hydrophobic polyvinyl acetate grafts, PEG-g-PVAc) with an anionic surfactant (sodium dodecyl sulfate, SDS) at the air-water interface has been studied. Contrast-matched neutron reflectivity (NR) complemented by surface tension measurements allowed elucidation of the interfacial composition and structure of these mixed systems, as well as providing physical insights into the polymer/surfactant interactions at the air-water interface. For both polymer concentrations studied, below and above its critical aggregation concentration, cac, (0.2 cac and 2 cac, corresponding to 0.0002 wt% or 0.013 mM and 0.002 wt% or 0.13 mM respectively), we observed a synergistic cooperative behaviour at low surfactant concentrations with a 1-2 nm mixed interfacial layer; a competitive adsorption behaviour at higher surfactant concentrations was observed where the polymer was depleted from the air-water interface, with an overall interfacial layer thickness ∼1.6 nm independent of the polymer concentration. The weakly associated polymer layer “hanging” proximally to the interface, however, played a role in enhancing foam stability, thus was relevant to the detergency efficacy in such polymer/surfactant mixtures in industrial formulations.
|
Nov 2019
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[8702]
Open Access
Abstract: The influence of processing conditions on the thin film microstructure is a fundamental question that must be understood to improve the performance of solution-processed organic electronic materials. Using grazing-incidence X-ray diffraction, we have studied the structure of thin films of a tetra(aniline)-surfactant complex prepared by drop-casting from five solvents (hexane, chloroform, tetrahydrofuran, dichloromethane and ethanol), selected to cover a range of polarities. We found that the structure, level of order and degree of orientation relative to the substrate were extremely sensitive to the solvent used. We have attempted to correlate such solvent sensitivity with a variety of solvent physical parameters. Of particular significance is the observation of a sharp structural transition in the thin films cast from more polar solvents; such films presented significantly greater crystallinity as measured by the coherence length and paracrystalline disorder parameter. We attribute this higher structural order to enhanced dissociation of the acid surfactant in the more polar solvents, which in turn promotes complex formation. Furthermore, the more polar solvents provide more effective screening of (i) the attractive ionic interaction between oppositely charged molecules, providing greater opportunity for dynamic reorganisation of the supramolecular aggregates into more perfect structures; and (ii) the repulsive interaction between the positively charged blocks permitting a solvophobic-driven aggregation of the aromatic surfaces during solvent evaporation.
|
Aug 2016
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[8319]
Open Access
Abstract: Using high pressure small angle X-ray scattering (HP-SAXS), we have studied monoolein (MO) mesophases at 18 wt% hydration in the presence of 10 nm silica nanoparticles (NPs) at NP–lipid number ratios (ν) of 1 × 10−6, 1 × 10−5 and 1 × 10−4 over the pressure range 1–2700 bar and temperature range 20–60 °C. In the absence of the silica NPs, the pressure–temperature (p–T) phase diagram of monoolein exhibited inverse bicontinuous cubic gyroid (QGII), lamellar alpha (Lα), and lamellar crystalline (Lc) phases. The addition of the NPs significantly altered the p–T phase diagram, changing the pressure (p) and the temperature (T) at which the transitions between these mesophases occurred. In particular, a strong NP concentration effect on the mesophase behaviour was observed. At low NP concentration, the p–T region pervaded by the QGII phase and the Lα–QGII mixture increased, and we attribute this behaviour to the NPs forming clusters at the mesophase domain boundaries, encouraging transition to the mesophase with a higher curvature. At high NP concentrations, the QGII phase was no longer observed in the p–T phase diagram. Instead, it was dominated by the lamellar (L) phases until the transition to a fluid isotropic (FI) phase at 60 °C at low pressure. We speculate that NPs formed aggregates with a “chain of pearls” structure at the mesophase domain boundaries, hindering transitions to the mesophases with higher curvatures. These observations were supported by small angle neutron scattering (SANS) and scanning electron microscopy (SEM). Our results have implications to nanocomposite materials and nanoparticle cellular entry where the interactions between NPs and organised lipid structures are an important consideration.
|
Jun 2016
|
|
I07-Surface & interface diffraction
|
Daniel
Toolan
,
Anna
Isakova
,
Richard
Hodgkinson
,
Nik
Reeves-Mclaren
,
Oliver
Hammond
,
Karen J.
Edler
,
Wuge
Briscoe
,
Tom
Arnold
,
Tim
Gough
,
Paul
Topham
,
Jon
Howse
Diamond Proposal Number(s):
[9328]
Abstract: Controlling polymer thin-film morphology and crystallinity is crucial for a wide range of applications, particularly in thin-film organic electronic devices. In this work, the crystallization behavior of a model polymer, poly(ethylene oxide) (PEO), during spin-coating is studied. PEO films were spun-cast from solvents possessing different polarities (chloroform, THF, and methanol) and probed via in situ grazing incidence wide-angle X-ray scattering. The crystallization behavior was found to follow the solvent polarity order (where chloroform < THF < methanol) rather than the solubility order (where THF > chloroform > methanol). When spun-cast from nonpolar chloroform, crystallization largely followed Avrami kinetics, resulting in the formation of morphologies comprising large spherulites. PEO solutions cast from more polar solvents (THF and methanol) do not form well-defined highly crystalline morphologies and are largely amorphous with the presence of small crystalline regions. The difference in morphological development of PEO spun-cast from polar solvents is attributed to clustering phenomena that inhibit polymer crystallization. This work highlights the importance of considering individual components of polymer solubility, rather than simple total solubility, when designing processing routes for the generation of morphologies with optimum crystallinities or morphologies.
|
Jun 2016
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[1990, 13139]
Open Access
Abstract: Solid supported lipid multilayers have been widely studied as model cell membranes and as a platform for novel materials. Conventionally, they are prepared from drop casting or spin coating of lipids dissolved in organic solvents, and lipid multilayers prepared from aqueous media have not been previously reported, due to extremely low lipid solubility (i.e. cmc ~10-9 M) in water. Here, the preparation of dioleoylphosphatidylcholine (DOPC) multilayers by drop casting aqueous small unilamellar and multilamellar vesicle or liposome (i.e. SUV and MLV) dispersions is reported on different surfaces, including mica, positively charged polyethylenimine (PEI) coated mica, and stearic trimethylammonium iodide (STAI) coated mica which exposes a monolayer of hydrocarbon tails. X-ray reflectivity (XRR) measurements using a unique “bending mica” method confirm the DOPC multilayer structure on all these substrates, and the influence of the substrate surface chemistry on the multilayer structure is discussed. We suggest that DOPC liposomes serve both as a delivery matrix where appreciable lipid concentration in water (~25 mg mL-1 or 14 mM, i.e. >107 cmc) is feasible, and as a structural precursor where the lamellar structure is readily retained on rupture of the vesicles at the solid surface upon solvent evaporation to facilitate rapid multilayer formation. Our results point towards a controlled preparation of ordered lipid multilayers by tailoring the liposome homogeneity and substrate surface properties, potentially offering a simple method for the inclusion of hydrophilic functional additives (e.g. drugs or nanoparticles) into lipid multilayer based hybrid materials.
|
Mar 2016
|
|
I22-Small angle scattering & Diffraction
|
Jennifer
Bulpett
,
Tim
Snow
,
Benoit
Quignon
,
Charlotte
Beddoes
,
Dora
Tang
,
Stephen
Mann
,
Olga
Shebanova
,
Claire
Pizzey
,
Nicholas
Terrill
,
Sean A
Davis
,
Wuge
Briscoe
Diamond Proposal Number(s):
[6137, 6873, 7215]
Abstract: This study focuses on how the mesophase transition behaviour of the phospholipid dioleoyl phosphatidylethanolamine (DOPE) is altered by the presence of 10 nm hydrophobic and 14 nm hydrophilic silica nanoparticles (NPs) at different concentrations. The lamellar to inverted hexagonal phase transition (Lα-HII) of phospholipids is energetically analogous to the membrane fusion process, therefore understanding the Lα-HII transition with nanoparticulate additives is relevant to how membrane fusion may be affected by these additives, in this case the silica NPs. The overriding observation is that the HII/Lα boundaries in the DOPE p-T phase diagram were shifted by the presence of NPs: the hydrophobic NPs enlarged the HII phase region and thus encouraged the inverted hexagonal (HII) phase to occur at lower temperatures, whilst hydrophilic NPs appeared to stabilise the Lα phase region. This effect was also NP-concentration dependent, with a more pronounced effect for higher concentration of the hydrophobic NPs, but the trend was less clear cut for the hydrophilic NPs. There was no evidence that the NPs were intercalated into the mesophases, and as such it was likely that they might have undergone microphase separation and resided at the mesophase domain boundaries. Whilst the loci and exact roles of the NPs invite further investigation, we tentatively discuss these results in terms of both the surface chemistry of the NPs and the effect of their curvature on the elastic bending energy considerations during the mesophase transition.
|
Sep 2015
|
|