I11-High Resolution Powder Diffraction
|
Xinchen
Kang
,
Lili
Li
,
Hengan
Wang
,
Tian
Luo
,
Shaojun
Xu
,
Yinlin
Chen
,
Joseph H.
Carter
,
Zi
Wang
,
Alena M.
Sheveleva
,
Kai
Lyu
,
Xue
Han
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Chiu C.
Tang
,
Lifei
Liu
,
Buxing
Han
,
Emma K.
Gibson
,
C. Richard A.
Catlow
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[33115]
Open Access
Abstract: Catalytic cleavage of β-O-4 linkages is an essential but challenging step in the depolymerisation of lignin. Here, we report the templated electrosynthesis of a hydrophobic metal-organic polyhedral catalyst (Cu-MOP-e), which exhibits excellent hydrothermal stability and exceptional activity for this reaction. The oxidative cleavage of 2-phenoxyacetophenone, 1, a lignin model compound, over Cu-MOP-e at 90 oC for 1 h affords full conversion with yields of the monomer products phenol and benzoic acid of 99%. The reusability of Cu-MOP-e has been confirmed by carrying out ten cycles of reaction. The mechanism of catalyst-substrate binding has been investigated by high resolution synchrotron X-ray powder diffraction, in situ X-ray absorption spectroscopy, electron paramagnetic resonance spectroscopy and density functional theory calculations. The combination of optimal porosity and active Cu(II) sites provides confined binding of 2-phenoxyacetophenone, thus promoting the cleavage of β-O-4 linkage under relatively mild conditions.
|
Dec 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Yu
Han
,
Wenyuan
Huang
,
Meng
He
,
Bing
An
,
Yinlin
Chen
,
Xue
Han
,
Lan
An
,
Meredydd
Kippax-Jones
,
Jiangnan
Li
,
Yuhang
Yang
,
Mark D.
Frogley
,
Cheng
Li
,
Danielle
Crawshaw
,
Pascal
Manuel
,
Svemir
Rudic
,
Yongqiang
Chen
,
Ian
Silverwood
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuesta
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Ben F.
Spencer
,
Marek
Nikiel
,
Daniel
Lee
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[37155, 36474]
Open Access
Abstract: Capture of trace benzene is an important and challenging task. Metal–organic framework materials are promising sorbents for a variety of gases, but their limited capacity towards benzene at low concentration remains unresolved. Here we report the adsorption of trace benzene by decorating a structural defect in MIL-125-defect with single-atom metal centres to afford MIL-125-X (X = Mn, Fe, Co, Ni, Cu, Zn; MIL-125, Ti8O8(OH)4(BDC)6 where H2BDC is 1,4-benzenedicarboxylic acid). At 298 K, MIL-125-Zn exhibits a benzene uptake of 7.63 mmol g−1 at 1.2 mbar and 5.33 mmol g−1 at 0.12 mbar, and breakthrough experiments confirm the removal of trace benzene (from 5 to <0.5 ppm) from air (up to 111,000 min g−1 of metal–organic framework), even after exposure to moisture. The binding of benzene to the defect and open Zn(II) sites at low pressure has been visualized by diffraction, scattering and spectroscopy. This work highlights the importance of fine-tuning pore chemistry for designing adsorbents for the removal of air pollutants.
|
Nov 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Dukula
De Alwis Jayasinghe
,
Yinlin
Chen
,
Jiangnan
Li
,
Justyna M.
Rogacka
,
Meredydd
Kippax-Jones
,
Wanpeng
Lu
,
Sergey
Sapchenko
,
Jinyue
Yang
,
Sarayute
Chansai
,
Tianze
Zhou
,
Lixia
Guo
,
Yujie
Ma
,
Longzhang
Dong
,
Daniil
Polyukhov
,
Lutong
Shan
,
Yu
Han
,
Danielle
Crawshaw
,
Xiangdi
Zeng
,
Zhaodong
Zhu
,
Lewis
Hughes
,
Mark D.
Frogley
,
Pascal
Manuel
,
Svemir
Rudic
,
Yongqiang
Chen
,
Christopher
Hardacre
,
Martin
Schroeder
,
Sihai
Yang
Open Access
Abstract: Ammonia (NH3) production in 2023 reached 150 million tons and is associated with potential concomitant production of up to 500 million tons of CO2 each year. Efforts to produce green NH3 are compromised since it is difficult to separate using conventional condensation chillers, but in situ separation with minimal cooling is challenging. While metal–organic framework materials offer some potential, they are often unstable and decompose in the presence of caustic and corrosive NH3. Here, we address these challenges by developing a pore-expansion strategy utilizing the flexible phosphonate framework, STA-12(Ni), which shows exceptional stability and capture of NH3 at ppm levels at elevated temperatures (100–220 °C) even under humid conditions. A remarkable NH3 uptake of 4.76 mmol g–1 at 100 μbar (equivalent to 100 ppm) is observed, and in situ neutron powder diffraction, inelastic neutron scattering, and infrared microspectroscopy, coupled with modeling, reveal a pore expansion from triclinic to a rhombohedral structure on cooperative binding of NH3 to unsaturated Ni(II) sites and phosphonate groups. STA-12(Ni) can be readily engineered into pellets or monoliths without losing adsorption capacity, underscoring its practical potential.
|
Nov 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Yu
Han
,
David
Brooks
,
Meng
He
,
Yinlin
Chen
,
Wenyuan
Huang
,
Boya
Tang
,
Bing
An
,
Xue
Han
,
Meredydd
Kippax-Jones
,
Mark D.
Frogley
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Svemir
Rudic
,
Yongqiang
Chen
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuesta
,
Catherine
Dejoie
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[33115, 30398]
Open Access
Abstract: The functionalization of metal–organic frameworks (MOFs) to enhance the adsorption of benzene at trace levels remains a significant challenge. Here, we report the exceptional adsorption of trace benzene in a series of zirconium-based MOFs functionalized with chloro groups. Notably, MFM-68-Cl2, constructed from an anthracene linker incorporating chloro groups, exhibits a remarkable benzene uptake of 4.62 mmol g–1 at 298 K and 0.12 mbar, superior to benchmark materials. In situ synchrotron X-ray diffraction, Fourier transform infrared microspectroscopy, and inelastic neutron scattering, coupled with density functional theory modeling, reveal the mechanism of binding of benzene in these materials. Overall, the excellent adsorption performance is promoted by an unprecedented cooperation between chloro-groups, the optimized pore size, aromatic functionality, and the flexibility of the linkers in response to benzene uptake in MFM-68-Cl2. This study represents the first example of enhanced adsorption of trace benzene promoted by −CH···Cl and Cl···π interactions in porous materials.
|
Oct 2024
|
|
I11-High Resolution Powder Diffraction
|
Xiangdi
Zeng
,
Zi
Wang
,
Meng
He
,
Wanpeng
Lu
,
Wenyuan
Huang
,
Bing
An
,
Jiangnan
Li
,
Mufan
Li
,
Ben F.
Spencer
,
Sarah J.
Day
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[37155]
Open Access
Abstract: Phenylacetylene is a detrimental impurity in the polymerisation of styrene, capable of poisoning catalysts even at ppm levels and significantly degrading the quality of polystyrene. The semi-hydrogenation of phenylacetylene to styrene instead of ethylbenzene is, therefore, an important industrial process. We report a novel cerium(IV)-based metal-organic framework (denoted as Ce-bptc), which is comprised of {Ce6} clusters bridged by biphenyl-3,3’,5,5’-tetracarboxylate linkers. Ce-bptc serves as an ideal support for palladium nanoparticles and the Pd@Ce-bptc catalyst demonstrates an excellent catalytic performance for semi-hydrogenation of phenylacetylene, achieving a selectivity of 93% to styrene on full conversion under ambient conditions with excellent reusability. In situ synchrotron X-ray powder diffraction and electron paramagnetic resonance spectroscopy revealed the binding domain of phenylacetylene within Ce-bptc and details of the reaction mechanism.
|
Oct 2024
|
|
E02-JEM ARM 300CF
I11-High Resolution Powder Diffraction
|
Eu-Pin
Tien
,
Guanhai
Cao
,
Yinlin
Chen
,
Nick
Clark
,
Evan
Tillotson
,
Duc-The
Ngo
,
Joseph H.
Carter
,
Stephen P.
Thompson
,
Chiu C.
Tang
,
Christopher
Allen
,
Sihai
Yang
,
Martin
Schroeder
,
Sarah J.
Haigh
Diamond Proposal Number(s):
[29225, 30737]
Open Access
Abstract: This work reports the thermal and electron beam stabilities of a series of isostructural metal-organic frameworks (MOFs) of type MFM-300(M), where M = Al, Ga, In, or Cr. MFM-300(Cr) was most electron beam stable, having an unusually high critical electron fluence of 1111 e-·Å-2 while the Group 13 element MOFs were found to be less stable. Within Group 13, MFM-300(Al) had the highest critical electron fluence of 330 e-·Å-2, compared to 189 e-·Å-2 and 147 e-·Å-2 for the Ga and In MOFs respectively. For all four MOFs, electron beam-induced structural degradation was independent of crystal size and was highly anisotropic, with the one-dimensional pore channels being the most stable, although the length and width of the channels decreased during electron beam irradiation. Notably, MFM-300(Cr) was found to retain crystallinity while shrinking up to 10%. Thermal stability was studied using in situ synchrotron X-ray diffraction at elevated temperature which revealed critical temperatures for crystal degradation to be 605, 570, 490 and 480°C for Al, Cr, Ga, and In, respectively. The pore channel diameters contracted by ~0.5% on desorption of solvent species but thermal degradation at higher temperatures was isotropic. The observed electron stabilities were found to scale with the relative inertness of the cations and correlate well to the measured lifetime of the materials when used as photocatalysts.
|
Jul 2024
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Lutong
Shan
,
Yujie
Ma
,
Shaojun
Xu
,
Meng
Zhou
,
Meng
He
,
Alena M.
Sheveleva
,
Rongsheng
Cai
,
Daniel
Lee
,
Yongqiang
Chen
,
Boya
Tang
,
Bing
Han
,
Yinlin
Chen
,
Lan
An
,
Tianze
Zhou
,
Martin
Wilding
,
Alexander S.
Eggeman
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Sarah J.
Haigh
,
Xinchen
Kang
,
Buxing
Han
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[33115, 31729]
Open Access
Abstract: The design and preparation of efficient catalysts for ammonia production under mild conditions is a desirable but highly challenging target. Here, we report a series of single-atom catalysts [M-SACs, M = Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Mo(II)] derived from UiO-66 containing structural defects and their application to electrochemical reduction of nitrate (NO3-) to ammonia (NH3). Cu-SAC and Fe-SAC exhibit remarkable yield rates for NH3 production of 30.0 and 29.0 mg h−1 cm−2, respectively, with a high Faradaic efficiency (FENH3) of over 96% at −1.0 V versus the reversible hydrogen electrode. Importantly, their catalytic performance can be retained in various simulated wastewaters. Complementary experiments confirmed the nature of single-atom sites within these catalysts and the binding domains of NO3- in UiO-66-Cu. In situ spectroscopic techniques, coupled with density functional theory calculations confirm the strong binding of NO3- and the formation of reaction intermediates, thus facilitating the catalytic conversion to NH3.
|
Jun 2024
|
|
I19-Small Molecule Single Crystal Diffraction
|
Jiangnan
Li
,
Xinran
Zhang
,
Mengtian
Fan
,
Yinlin
Chen
,
Yujie
Ma
,
Gemma
Smith
,
Inigo
Vitórica-Yrezábal
,
Daniel
Lee
,
Shaojun
Xu
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[34413]
Open Access
Abstract: Optimization of active sites and stability under irradiation are important targets for sorbent materials that might be used for iodine (I2) storage. Herein, we report the direct observation of I2 binding in a series of Cu(II)-based isostructural metal–organic frameworks, MFM-170, MFM-172, MFM-174, NJU-Bai20, and NJU-Bai21, incorporating various functional groups (–H, −CH3, – NH2, –C≡C–, and −CONH–, respectively). MFM-170 shows a reversible uptake of 3.37 g g–1 and a high packing density of 4.41 g cm–3 for physiosorbed I2. The incorporation of −NH2 and –C≡C– moieties in MFM-174 and NJU-Bai20, respectively, enhances the binding of I2, affording uptakes of up to 3.91 g g–1. In addition, an exceptional I2 packing density of 4.83 g cm–3 is achieved in MFM-174, comparable to that of solid iodine (4.93 g cm–3). In situ crystallographic studies show the formation of a range of supramolecular and chemical interactions [I···N, I···H2N] and [I···C≡C, I–C═C–I] between −NH2, –C≡C– sites, respectively, and adsorbed I2 molecules. These observations have been confirmed via a combination of solid-state nuclear magnetic resonance, X-ray photoelectron, and Raman spectroscopies. Importantly, γ-irradiation confirmed the ultraresistance of MFM-170, MFM-174, and NJU-Bai20 suggesting their potential as efficient sorbents for cleanup of radioactive waste.
|
May 2024
|
|
I11-High Resolution Powder Diffraction
|
Martin
Schroeder
,
Christopher
Marsh
,
Xue
Han
,
Zhenzhong
Lu
,
Ivan
Da Silva
,
Yongqiang
Chen
,
Luke L.
Daemen
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Anibal Javier
Ramirez-Cuesta
,
Sihai
Yang
Open Access
Abstract: The functionalisation of organic linkers in metal-organic frameworks (MOFs) to improve gas uptake is well-documented. Although the positive role of free carboxylic acid sites in MOFs for binding gas molecules has been proposed in computational studies, relatively little experimental evidence has been reported in support of this. Primarily this is because of the inherent synthetic difficulty to prepare MOF materials bearing free, accessible –COOH moieties which would normally bind to metal ions within the framework structure. Here, we describe the direct binding of CO2 and C2H2 molecules to the free -COOH sites within the pores of MFM-303(Al). MFM-303(Al) exhibits highly selective adsorption of CO2 and C2H2 with a high selectivity for C2H2 over C2H4. In situ synchrotron X-ray diffraction and inelastic neutron scattering, coupled with modelling, highlight the cooperative interactions of adsorbed CO2 and C2H2 molecules with free -COOH and -OH sites within MFM-303(Al), thus rationalising the observed high selectivity for gas separation.
|
Apr 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Xiangbing
Zeng
,
Jiangnan
Li
,
Meng
He
,
Wanpeng
Lu
,
Danielle
Crawshaw
,
Lixia
Guo
,
Yujie
Ma
,
Meredydd
Kippax-Jones
,
Yongqiang
Cheng
,
Pascal
Manuel
,
Svemir
Rudic
,
Mark D.
Frogley
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[30398]
Open Access
Abstract: We report the high adsorption of NH3 in the titanium-based metal-organic framework, MFM-300(Ti), comprising extended [TiO6]∞ chains linked by biphenyl-3,3’,5,5’-tetracarboxylate ligands. At 273 K and 1 bar, MFM-300(Ti) shows an exceptional NH3 uptake of 23.4 mmol g–1 with a record-high packing density of 0.84 g cm–3. Dynamic breakthrough experiments confirm the excellent uptake and separation of NH3 at low concentration (1000 ppm). The combination of in situ neutron powder diffraction and spectroscopic studies reveal strong, yet reversible binding interactions of NH3 to the framework oxygen sites.
|
Apr 2024
|
|