I13-2-Diamond Manchester Imaging
|
Huw C. W.
Parks
,
Matthew
Jones
,
Aaron
Wade
,
Alice
Llewellyn
,
Chun
Tan
,
Hamish
Reid
,
Ralf
Ziesche
,
Thomas M. M.
Heenan
,
Shashidhara
Marathe
,
Christoph
Rau
,
Paul R.
Shearing
,
Rhodri
Jervis
Diamond Proposal Number(s):
[28650]
Open Access
Abstract: To understand fracture behaviour in battery materials, X-ray computed tomography (X-ray CT) has become the primary technique for non-destructive particle and crack analysis. Cracking causes performance decline in polycrystalline NMC811 by exposing new surfaces for parasitic electrolyte reactions and disconnecting active material from the electrode matrix. First cycle crack formation has been documented, but definitive electrochemically induced particle fracture is challenging to assess due to complex sample preparation and high-resolution X-ray imaging requirements. Presented here is an operando X-ray CT technique that enables accurate observation of fracture behaviour during de-/lithiation. A non-linear relationship between fracture behaviour and cell voltage was uncovered, and evidence of particle reformation during re-lithiation. Using a grey level analysis algorithm for fracture detection, we expedite damage evaluation in several thousands of particles throughout the electrochemical process, understanding crack initiation, propagation, and closure on a large, statistical scale and give the ability to track any one of the thousands of particles through its individual electrochemical history. Additionally, we explore the effects of continued volumetric hysteresis on particle damage. For the first time, we demonstrate the complex plurality of fracture behaviour in commercial lithium-ion battery materials, aiding in designing mitigation strategies against particle fracture.
|
Mar 2025
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[34473]
Open Access
Abstract: Molluscan brains are composed of morphologically consistent and functionally interrogable neurons, offering rich opportunities for understanding how neural circuits drive behavior. Nonetheless, detailed component-level CNS maps are often lacking, total neuron numbers are unknown, and organizational principles remain poorly defined, limiting a full and systematic characterization of circuit operation. Here, we establish an accessible, generalizable approach, harnessing synchrotron X-ray tomography, to rapidly determine the three-dimensional structure of the multimillimeter-scale CNS of Lymnaea. Focusing on the feeding ganglia, we generate a full neuron-level reconstruction, revealing key design principles and revising cell count estimates upward threefold. Our atlas uncovers the superficial but also nonsuperficial ganglionic architecture, reveals the cell organization in normally hidden regions—ganglionic “dark sides”—and details features of single-neuron morphology, together guiding targeted follow-up functional investigation based on intracellular recordings. Using this approach, we identify three pivotal neuron classes: a command-like food-signaling cell type, a feeding central pattern generator interneuron, and a unique behavior-specific motoneuron, together significantly advancing understanding of the function of this classical control circuit. Combining our morphological and electrophysiological data, we also establish a functional CNS atlas in Lymnaea as a shared and scalable resource for the research community. Our approach enables the rapid construction of cell atlases in large-scale nervous systems, with key relevance to functional circuit interrogation in a diverse range of model organisms.
|
Mar 2025
|
|
DIAD-Dual Imaging and Diffraction Beamline
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[32980]
Open Access
Abstract: Machine learning techniques are being increasingly applied in medical and physical sciences across a variety of imaging modalities; however, an important issue when developing these tools is the availability of good quality training data. Here we present a unique, multimodal synchrotron dataset of a bespoke zinc-doped Zeolite 13X sample that can be used to develop advanced deep learning and data fusion pipelines. Multi-resolution micro X-ray computed tomography was performed on a zinc-doped Zeolite 13X fragment to characterise its pores and features before spatially resolved X-ray diffraction computed tomography was carried out to characterise the topographical distribution of sodium and zinc phases. Zinc absorption was controlled to create a simple, spatially isolated, two-phase material. Both raw and processed data are available as a series of Zenodo entries. Altogether we present a spatially resolved, three-dimensional, multimodal, multi-resolution dataset that can be used to develop machine learning techniques. Such techniques include the development of super-resolution, multimodal data fusion, and 3D reconstruction algorithms.
|
Feb 2025
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[19354]
Open Access
Abstract: Laser powder bed fusion (LPBF) of Polyamide 12 (PA12) using a near-infra-red (NIR) beam is largely unexplored; therefore, the beam-matter interaction, evolution mechanisms of the melt pool and defects remain unclear. Here, we employed a combination of in situ synchrotron X-ray imaging, ex situ materials characterisation techniques, and high-fidelity process simulations to study these behaviours during LPBF of PA12. Our results demonstrate that the NIR absorption of PA12 can be improved by 600 times through powder surface modification with C, P and Al species. In situ X-ray images reveal that the PA12 powders undergo melting, viscous merging, volume expansion, warping, solidification, and shrinkage before forming a solid track. Our results uncover the bubble evolution mechanisms during LPBF of PA12. During laser scanning, the high-energy laser beam produces organic substances/vapours which are trapped inside bubbles during viscous merging. These bubbles continue to shrink due to vapour condensation as the polymer cools under a cooling rate range of 200 - 600 K s−1. Using the collected data, we have developed a data-driven bubble shrinkage criterion to predict the bubble shrinkage coefficient using the bubble half-life, improving the build quality of LPBF polymeric parts.
|
Feb 2025
|
|
I13-1-Coherence
I13-2-Diamond Manchester Imaging
|
Christoph
Rau
,
Darren J.
Batey
,
Shashidhara
Marathe
,
Leonard
Turpin
,
Kudakwashe
Jakata
,
Silvia
Cipiccia
,
Isabel
Anthony
,
Roberto
Volpe
,
Claus-Peter
Richter
,
Alessandra
Carriero
,
Maud
Dumoux
,
Jurgen E.
Schneider
,
Erica
Dall'Armellina
,
Marc W.
Holderied
,
Jan
Van Den Bulcke
Open Access
Abstract: We report about the experimental work related to hierarchical structures at the Diamond I13L beamlines. The I13-2 Imaging and I13-1 Coherence beamlines provide imaging with micro- and nano-resolution. The Diamond II upgrade for the synchrotron source and the OCTOPI upgrade for I13L provide new opportunities for expanding the existing scientific areas in multiscale and operando imaging. We describe the scientific research benefitting from the instrumental upgrade. Comparable recording times across all length scales will enable hierarchical operando imaging. With the implementation of automated high-throughput data acquisition and analysis, large numbers of samples will be analyzed.
|
Nov 2024
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[25254]
Open Access
Abstract: The engineering of biochars with desired morphologies and pore structures is a far-reaching objective towards sustainable pore-dependent environmental technologies, such as water and soil remediation or catalysis. We hereby report a series of experiments that allow the direct following of the shape and porosity of single biochar particles during pyrolysis. Particles ~ 1–2 mm in diameter of unwashed and water-washed raw walnut shells were continuously 3D imaged during pyrolysis to 575 ℃ at a 10 K min−1 in Ar to obtain time- and temperature-resolved x-ray micro computed tomographies to a 0.82 μm resolution. Results showed visual evidence of a 30% and 70% v/v particle shrinkage for unwashed and washed samples, respectively. Particle swelling between 200 and 300 ℃ in the unwashed sample provided evidence of the softening of native biopolymers associated with lignin in untreated biomass. A purpose-defined parameter Λ shows the temperature-dependence of pore re-distribution towards the center of the particle to be linear for both samples. Λ was found to be in the washed sample, approximately 3.5 times faster than in the unwashed one. Such linear dependence is significantly slower than an exponential Arrhenius-like trend thereby providing a qualitative measure of the heat and mass transport phenomena limiting the chemical reactions in the porous medium. This evidence is key to resolving the pathways to the thermochemical decomposition of biomass leading to preparation of precision-engineered biochars.
|
Oct 2024
|
|
I13-2-Diamond Manchester Imaging
|
Carlos
Navarrete-Leon
,
P. Stephen
Patrick
,
Adam
Doherty
,
Harry
Allan
,
Silvia
Cipiccia
,
Shashidhara
Marathe
,
Kaz
Wanelik
,
Michela
Esposito
,
Charlotte K.
Hagen
,
Alessandro
Olivo
,
Marco
Endrizzi
Diamond Proposal Number(s):
[30748]
Open Access
Abstract: Two-directional beam-tracking (2DBT) is a method for phase-contrast imaging and tomography that uses an intensity modulator to structure the X-ray beam into an array of independent circular beamlets that are resolved by a high-resolution detector. It features isotropic spatial resolution, provides two-dimensional phase sensitivity, and enables the three-dimensional reconstructions of the refractive index decrement, δ, and the attenuation coefficient, μ. In this work, the angular sensitivity and the spatial resolution of 2DBT images in a synchrotron-based implementation is reported. In its best configuration, angular sensitivities of ∼20 nrad and spatial resolution of at least 6.25 µm in phase-contrast images were obtained. Exemplar application to the three-dimensional imaging of soft tissue samples, including a mouse liver and a decellularized porcine dermis, is also demonstrated.
|
Sep 2024
|
|
I13-2-Diamond Manchester Imaging
|
Sara
Ajami
,
Zoe
Van Den Dam
,
Julia
Hut
,
Dawn
Savery
,
Milton
Chin
,
Maarten
Koudstaal
,
Miranda
Steacy
,
Alessandra
Carriero
,
Andrew
Pitsillides
,
Yu-Mei
Chang
,
Christoph
Rau
,
Shashidhara
Marathe
,
David
Dunaway
,
Noor Ul Owase
Jeelani
,
Silvia
Schievano
,
Erwin
Pauws
,
Alessandro
Borghi
Diamond Proposal Number(s):
[25386, 29093]
Open Access
Abstract: Crouzon syndrome is a congenital craniofacial disorder caused by mutations in the Fibroblast Growth Factor Receptor 2 (FGFR2). It is characterized by the premature fusion of cranial sutures, leading to a brachycephalic head shape, and midfacial hypoplasia. The aim of this study was to investigate the effect of the FGFR2 mutation on the microarchitecture of cranial bones at different stages of postnatal skull development, using the FGFR2C342Y mouse model. Apart from craniosynostosis, this model shows cranial bone abnormalities. High-resolution synchrotron microtomography images of the frontal and parietal bone were acquired for both FGFR2C342Y/+ (Crouzon, heterozygous mutant) and FGFR2+/+ (control, wild-type) mice at five ages (postnatal days 1, 3, 7, 14 and 21, n = 6 each). Morphometric measurements were determined for cortical bone porosity: osteocyte lacunae and canals. General linear model to assess the effect of age, anatomical location and genotype was carried out for each morphometric measurement. Histological analysis was performed to validate the findings. In both groups (Crouzon and wild-type), statistical difference in bone volume fraction, average canal volume, lacunar number density, lacunar volume density and canal volume density was found at most age points, with the frontal bone generally showing higher porosity and fewer lacunae. Frontal bone showed differences between the Crouzon and wild-type groups in terms of lacunar morphometry (average lacunar volume, lacunar number density and lacunar volume density) with larger, less dense lacunae around the postnatal age of P7–P14. Histological analysis of bone showed marked differences in frontal bone only. These findings provide a better understanding of the pathogenesis of Crouzon syndrome and will contribute to computational models that predict postoperative changes with the aim to improve surgical outcome.
|
Aug 2024
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
I13-2-Diamond Manchester Imaging
|
Bingkun
Hu
,
Shengming
Zhang
,
Ziyang
Ning
,
Dominic
Spencer-Jolly
,
Dominic L. R.
Melvin
,
Xiangwen
Gao
,
Johann
Perera
,
Shengda D.
Pu
,
Gregory J.
Rees
,
Longlong
Wang
,
Lechen
Yang
,
Hui
Gao
,
Shashidhara
Marathe
,
Genoveva
Burca
,
T. James
Marrow
,
Peter G.
Bruce
Diamond Proposal Number(s):
[26060, 30683, 28773]
Open Access
Abstract: Charging current densities of solid-state batteries with lithium metal anodes and ceramic electrolytes are severely limited due to lithium dendrites that penetrate the electrolyte leading to a short circuit. We show that dendrite growth can be inhibited by different crack deflection mechanisms when multi-layered solid electrolytes, such as Li6PS5Cl/Li3ScCl6/Li6PS5Cl and Li6PS5Cl/Li10GeP2S12/Li6PS5Cl, are employed but not when the inner layer is Li3PS4. X-ray tomographic imaging shows crack deflection along mechanically weak interfaces between solid electrolytes as a result of local mismatches in elastic moduli. Cracks are also deflected laterally within Li3ScCl6, which contains preferentially oriented particles. Deflection occurs without lithium being present. In cases where the inner layers react with lithium, the resulting decomposition products can fill and block crack propagation. All three mechanisms are effective at low stack pressures. Operating at 2.5 MPa, multi-layered solid electrolytes Li6PS5Cl/Li3ScCl6/Li6PS5Cl and Li6PS5Cl/Li10GeP2S12/Li6PS5Cl can achieve lithium plating at current densities exceeding 15 mA cm−2.
|
Jul 2024
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[29256]
Open Access
Abstract: High-resolution spatial and temporal analysis and 3D visualization of time-dependent processes, such as human dental enamel acid demineralization, often present a challenging task. Overcoming this challenge often requires the development of special methods. Dental caries remains one of the most important oral diseases that involves the demineralization of hard dental tissues as a consequence of acid production by oral bacteria. Enamel has a hierarchically organized architecture that extends down to the nanostructural level and requires high resolution to study its evolution in detail. Enamel demineralization is a dynamic process that is best investigated with the help of in situ experiments. In previous studies, synchrotron tomography was applied to study the 3D enamel structure at certain time points (time-lapse tomography). Here, another distinct approach to time-evolving tomography studies is presented, whereby the sample image is reconstructed as it undergoes continuous rotation over a virtually unlimited angular range. The resulting (single) data set contains the data for multiple (potentially overlapping) intermediate tomograms that can be extracted and analyzed as desired using time-stepping selection of data subsets from the continuous fly-scan recording. One of the advantages of this approach is that it reduces the amount of time required to collect an equivalent number of single tomograms. Another advantage is that the nominal time step between successive reconstructions can be significantly reduced. We applied this approach to the study of acidic enamel demineralization and observed the progression of demineralization over time steps significantly smaller than the total acquisition time of a single tomogram, with a voxel size smaller than 0.5 μm. It is expected that the approach presented in this paper can be useful for high-resolution studies of other dynamic processes and for assessing small structural modifications in evolving hierarchical materials.
|
Feb 2024
|
|