|
Jon
Agirre
,
Mihaela
Atanasova
,
Haroldas
Bagdonas
,
Charles B.
Ballard
,
Arnaud
Basle
,
James
Beilsten-Edmands
,
Rafael J.
Borges
,
David G.
Brown
,
J. Javier
Burgos-Marmol
,
John M.
Berrisford
,
Paul S.
Bond
,
Iracema
Caballero
,
Lucrezia
Catapano
,
Grzegorz
Chojnowski
,
Atlanta G.
Cook
,
Kevin D.
Cowtan
,
Tristan I.
Croll
,
Judit É.
Debreczeni
,
Nicholas E.
Devenish
,
Eleanor J.
Dodson
,
Tarik R.
Drevon
,
Paul
Emsley
,
Gwyndaf
Evans
,
Phil R.
Evans
,
Maria
Fando
,
James
Foadi
,
Luis
Fuentes-Montero
,
Elspeth F.
Garman
,
Markus
Gerstel
,
Richard J.
Gildea
,
Kaushik
Hatti
,
Maarten L.
Hekkelman
,
Philipp
Heuser
,
Soon Wen
Hoh
,
Michael A.
Hough
,
Huw T.
Jenkins
,
Elisabet
Jiménez
,
Robbie P.
Joosten
,
Ronan M.
Keegan
,
Nicholas
Keep
,
Eugene B.
Krissinel
,
Petr
Kolenko
,
Oleg
Kovalevskiy
,
Victor S.
Lamzin
,
David M.
Lawson
,
Andrey
Lebedev
,
Andrew G. W.
Leslie
,
Bernhard
Lohkamp
,
Fei
Long
,
Martin
Maly
,
Airlie
Mccoy
,
Stuart J.
Mcnicholas
,
Ana
Medina
,
Claudia
Millán
,
James W.
Murray
,
Garib N.
Murshudov
,
Robert A.
Nicholls
,
Martin E. M.
Noble
,
Robert
Oeffner
,
Navraj S.
Pannu
,
James M.
Parkhurst
,
Nicholas
Pearce
,
Joana
Pereira
,
Anastassis
Perrakis
,
Harold R.
Powell
,
Randy J.
Read
,
Daniel J.
Rigden
,
William
Rochira
,
Massimo
Sammito
,
Filomeno
Sanchez Rodriguez
,
George M.
Sheldrick
,
Kathryn L.
Shelley
,
Felix
Simkovic
,
Adam J.
Simpkin
,
Pavol
Skubak
,
Egor
Sobolev
,
Roberto A.
Steiner
,
Kyle
Stevenson
,
Ivo
Tews
,
Jens M. H.
Thomas
,
Andrea
Thorn
,
Josep Triviño
Valls
,
Ville
Uski
,
Isabel
Uson
,
Alexei
Vagin
,
Sameer
Velankar
,
Melanie
Vollmar
,
Helen
Walden
,
David
Waterman
,
Keith S.
Wilson
,
Martyn
Winn
,
Graeme
Winter
,
Marcin
Wojdyr
,
Keitaro
Yamashita
Open Access
Abstract: The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.
|
Jun 2023
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Jingxu
Guo
,
Bin
Liu
,
Midory
Thorikay
,
Minmin
Yu
,
Xiaoyan
Li
,
Zhen
Tong
,
Richard M.
Salmon
,
Randy
Read
,
Peter
Ten Dijke
,
Nicholas W.
Morrell
,
Wei
Li
Diamond Proposal Number(s):
[21426]
Open Access
Abstract: Heterozygous mutations in BMPR2 (bone morphogenetic protein (BMP) receptor type II) cause pulmonary arterial hypertension. BMPRII is a receptor for over 15 BMP ligands, but why BMPR2 mutations cause lung-specific pathology is unknown. To elucidate the molecular basis of BMP:BMPRII interactions, we report crystal structures of binary and ternary BMPRII receptor complexes with BMP10, which contain an ensemble of seven different BMP10:BMPRII 1:1 complexes. BMPRII binds BMP10 at the knuckle epitope, with the A-loop and β4 strand making BMPRII-specific interactions. The BMPRII binding surface on BMP10 is dynamic, and the affinity is weaker in the ternary complex than in the binary complex. Hydrophobic core and A-loop interactions are important in BMPRII-mediated signalling. Our data reveal how BMPRII is a low affinity receptor, implying that forming a signalling complex requires high concentrations of BMPRII, hence mutations will impact on tissues with highest BMPR2 expression such as the lung vasculature.
|
May 2022
|
|
I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Cavan
Bennett
,
Moyra
Lawrence
,
Jose A.
Guerrero
,
Simon
Stritt
,
Amie K.
Waller
,
Yahui
Yan
,
Richard W.
Mifsud
,
Jose
Ballester-Beltran
,
Ayesha A.
Baig
,
Annett
Mueller
,
Louisa
Mayer
,
James
Warland
,
Christopher J.
Penkett
,
Parsa
Akbari
,
Thomas
Moreau
,
Amanda L
Evans
,
Souradip
Mookerjee
,
Gary J.
Hoffman
,
Kourosh
Saeb-Parsy
,
David
Adams
,
Amber L
Couzens
,
Markus
Bender
,
Wendy N.
Erber
,
Bernhard
Nieswandt
,
Randy J.
Read
,
Cedric
Ghevaert
Open Access
Abstract: The process of platelet production has so far been understood to be a two-stage process: megakaryocyte (MK) maturation from haematopoietic stem cells followed by proplatelet formation, with each phase regulating the peripheral blood platelet count. Proplatelet formation releases “beads-on-a-string” preplatelets into the blood stream that undergo fission into mature platelets. For the first time, we show that preplatelet maturation is a third, tightly regulated, critical process akin to cytokinesis that regulates platelet count. We show that deficiency in cytokine receptor-like factor 3 (CRLF3) in mice leads to an isolated and sustained 25-48% reduction in the platelet count without any effect on other blood cell lineages. We show that Crlf3-/- preplatelets have increased microtubule stability, possibly due to increased microtubule glutamylation via CRLF3’s interaction with key members of the Hippo pathway. Using a mouse model of JAK2V617F Essential Thrombocythaemia (ET), we show that a lack of CRLF3 leads to a long-term lineage-specific normalisation of the platelet count. We thereby postulate that targeting CRLF3 has therapeutic potential for treatment of thrombocythaemia.
|
Jan 2022
|
|
I04-Macromolecular Crystallography
|
Minkyung
Baek
,
Frank
Dimaio
,
Ivan
Anishchenko
,
Justas
Dauparas
,
Sergey
Ovchinnikov
,
Gyu Rie
Lee
,
Jue
Wang
,
Qian
Cong
,
Lisa N.
Kinch
,
R. Dustin
Schaeffer
,
Claudia
Millán
,
Hahnbeom
Park
,
Carson
Adams
,
Caleb R.
Glassman
,
Andy
Degiovanni
,
Jose H.
Pereira
,
Andria V.
Rodrigues
,
Alberdina A.
Van Dijk
,
Ana C.
Ebrecht
,
Diederik J.
Opperman
,
Theo
Sagmeister
,
Christoph
Buhlheller
,
Tea
Pavkov-Keller
,
Manoj K.
Rathinaswamy
,
Udit
Dalwadi
,
Calvin K.
Yip
,
John E.
Burke
,
K. Christopher
Garcia
,
Nick V.
Grishin
,
Paul D.
Adams
,
Randy J.
Read
,
David
Baker
Diamond Proposal Number(s):
[20303]
Abstract: DeepMind presented remarkably accurate predictions at the recent CASP14 protein structure prediction assessment conference. We explored network architectures incorporating related ideas and obtained the best performance with a three-track network in which information at the 1D sequence level, the 2D distance map level, and the 3D coordinate level is successively transformed and integrated. The three-track network produces structure predictions with accuracies approaching those of DeepMind in CASP14, enables the rapid solution of challenging X-ray crystallography and cryo-EM structure modeling problems, and provides insights into the functions of proteins of currently unknown structure. The network also enables rapid generation of accurate protein-protein complex models from sequence information alone, short circuiting traditional approaches which require modeling of individual subunits followed by docking. We make the method available to the scientific community to speed biological research.
|
Jul 2021
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[15916]
Open Access
Abstract: AMPylation is an inactivating modification that alters the activity of the major endoplasmic reticulum (ER) chaperone BiP to match the burden of unfolded proteins. A single ER‐localised Fic protein, FICD (HYPE), catalyses both AMPylation and deAMPylation of BiP. However, the basis for the switch in FICD's activity is unknown. We report on the transition of FICD from a dimeric enzyme, that deAMPylates BiP, to a monomer with potent AMPylation activity. Mutations in the dimer interface, or of residues along an inhibitory pathway linking the dimer interface to the enzyme's active site, favour BiP AMPylation in vitro and in cells. Mechanistically, monomerisation relieves a repressive effect allosterically propagated from the dimer interface to the inhibitory Glu234, thereby permitting AMPylation‐competent binding of MgATP. Moreover, a reciprocal signal, propagated from the nucleotide‐binding site, provides a mechanism for coupling the oligomeric state and enzymatic activity of FICD to the energy status of the ER.
|
Sep 2019
|
|
I02-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[9424]
Open Access
Abstract: Data pathologies caused by effects such as diffraction anisotropy and translational noncrystallographic symmetry (tNCS) can dramatically complicate the solution of the crystal structures of macromolecules. Such problems were encountered in determining the structure of a mutant form of Rab27a, a member of the Rab GTPases. Mutant Rab27a constructs that crystallize in the free form were designed for use in the discovery of drugs to reduce primary tumour invasiveness and metastasis. One construct, hRab27aMut, crystallized within 24 h and diffracted to 2.82 Å resolution, with a unit cell possessing room for a large number of protein copies. Initial efforts to solve the structure using molecular replacement by Phaser were not successful. Analysis of the data set revealed that the crystals suffered from both extreme anisotropy and strong tNCS. As a result, large numbers of reflections had estimated standard deviations that were much larger than their measured intensities and their expected intensities, revealing problems with the use of such data at the time in Phaser. By eliminating extremely weak reflections with the largest combined effects of anisotropy and tNCS, these problems could be avoided, allowing a molecular-replacement solution to be found. The lessons that were learned in solving this structure have guided improvements in the numerical analysis used in Phaser, particularly in identifying diffraction measurements that convey very little information content. The calculation of information content could also be applied as an alternative to ellipsoidal truncation. The post-mortem analysis also revealed an oversight in accounting for measurement errors in the fast rotation function. While the crystal of mutant Rab27a is not amenable to drug screening, the structure can guide new modifications to obtain more suitable crystal forms.
|
Mar 2019
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8547]
Abstract: The renin-angiotensin cascade is a hormone system that regulates blood pressure and fluid balance. Renin-mediated cleavage of the angiotensin I peptide from the N-terminus of angiotensinogen (AGT) is the rate-limiting step of this cascade; however, the detailed molecular mechanism underlying this step is unclear. Here, we solved the crystal structures of glycosylated human AGT (2.30 Å resolution), its encounter complex with renin (2.55 Å), AGT cleaved in its reactive center loop (RCL; 2.97 Å) and spent AGT from which the N-terminal angiotensin peptide was removed (2.63 Å). These structures revealed that AGT undergoes profound conformational changes and binds renin through a tail-into-mouth allosteric mechanism that inserts the N-terminus into a pocket equivalent to a hormone binding site on other serpins. These changes fully extended the N-terminal tail, with the scissile bond for angiotensin release docked in renin’s active site. Insertion of the N-terminus into this pocket accompanied a complete unwinding of helix H of AGT, which, in turn, formed key interactions with renin in the complementary binding interface. Mutagenesis and kinetic analyses confirmed that renin-mediated production of angiotensin I is controlled by interactions of amino acid residues and glycan components outside renin’s active site cleft. Our findings indicate that AGT adapts unique serpin features for hormone delivery and binds renin through concerted movements in the N-terminal tail and in its main body to modulate angiotensin release. These insights provide a structural basis for the development of agents that attenuate angiotensin release by targeting AGT’s hormone binding pocket.
|
Dec 2018
|
|
I02-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[15916, 11235]
Open Access
Abstract: The endoplasmic reticulum (ER)-localized Hsp70 chaperone BiP contributes to protein folding homeostasis by engaging unfolded client proteins in a process that is tightly coupled to ATP binding and hydrolysis. The inverse correlation between BiP AMPylation and the burden of unfolded ER proteins suggests a post-translational mechanism for adjusting BiP’s activity to changing levels of ER stress, but the underlying molecular details are unexplored. We present biochemical and crystallographic studies indicating that irrespective of the identity of the bound nucleotide AMPylation biases BiP towards a conformation normally attained by the ATP-bound chaperone. AMPylation does not affect the interaction between BiP and J-protein co-factors but appears to allosterically impair J protein-stimulated ATP-hydrolysis, resulting in the inability of modified BiP to attain high affinity for its substrates. These findings suggest a molecular mechanism by which AMPylation serves as a switch to inactivate BiP, limiting its interactions with substrates whilst conserving ATP.
|
Oct 2017
|
|
I24-Microfocus Macromolecular Crystallography
|
Abstract: The structural analysis of class B G protein-coupled receptors (GPCR), cell surface proteins responding to peptide hormones, has until recently been restricted to the extracellular domain (ECD). Corticotropin-releasing factor receptor type 1 (CRF1R) is a class B receptor mediating stress response and also considered a drug target for depression and anxiety. Here we report the crystal structure of the transmembrane domain of human CRF1R in complex with the small-molecule antagonist CP-376395 in a hexagonal setting with translational non-crystallographic symmetry. Molecular dynamics and metadynamics simulations on this novel structure and the existing TMD structure for CRF1R provides insight as to how the small molecule ligand gains access to the induced-fit allosteric binding site with implications for the observed selectivity against CRF2R. Furthermore, molecular dynamics simulations performed using a full-length receptor model point to key interactions between the ECD and extracellular loop 3 of the TMD providing insight into the full inactive state of multidomain class B GPCRs.
|
Oct 2017
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[15916]
Open Access
Abstract: Hunter syndrome is a rare but devastating childhood disease caused by mutations in the IDS gene encoding iduronate-2-sulfatase, a crucial enzyme in the lysosomal degradation pathway of dermatan sulfate and heparan sulfate. These complex glycosaminoglycans have important roles in cell adhesion, growth, proliferation and repair, and their degradation and recycling in the lysosome is essential for cellular maintenance. A variety of disease-causing mutations have been identified throughout the IDS gene. However, understanding the molecular basis of the disease has been impaired by the lack of structural data. Here, we present the crystal structure of human IDS with a covalently bound sulfate ion in the active site. This structure provides essential insight into multiple mechanisms by which pathogenic mutations interfere with enzyme function, and a compelling explanation for severe Hunter syndrome phenotypes. Understanding the structural consequences of disease-associated mutations will facilitate the identification of patients that may benefit from specific tailored therapies.
|
Jun 2017
|
|