B18-Core EXAFS
|
Diamond Proposal Number(s):
[20856]
Open Access
Abstract: The catalytic synthesis of NH3 from the thermodynamically challenging N2 reduction reaction under mild conditions is currently a significant problem for scientists. Accordingly, herein, we report the development of a nitrogenase-inspired inorganic-based chalcogenide system for the efficient electrochemical conversion of N2 to NH3, which is comprised of the basic structure of [Fe–S2–Mo]. This material showed high activity of 8.7 mgNH3 mgFe−1 h−1 (24 μgNH3 cm−2 h−1) with an excellent faradaic efficiency of 27% for the conversion of N2 to NH3 in aqueous medium. It was demonstrated that the Fe1 single atom on [Fe–S2–Mo] under the optimal negative potential favors the reduction of N2 to NH3 over the competitive proton reduction to H2. Operando X-ray absorption and simulations combined with theoretical DFT calculations provided the first and important insights on the particular electron-mediating and catalytic roles of the [Fe–S2–Mo] motifs and Fe1, respectively, on this two-dimensional (2D) molecular layer slab.
|
Jan 2021
|
|
|
Open Access
Abstract: Earth-abundant Mn-based oxide nanoparticles are supported on carbon nitride using two different immobilization methods and tested for the oxygen reduction reaction. Compared to the metal free CN, the immobilization of Mn oxide enhances not only the electrocatalytic activity but also the selectivity towards the 4e- reduction reaction of O2 to H2O. The XPS analysis reveals the interaction of the pyridine N species with Mn3O4 nanoparticles being particularly beneficial. This interaction is realized—although to a limited extent—when preparing the catalysts via impregnation; via the oleic acid route it is not observed. Whilst this work shows the potential of these systems to catalyze the ORR, the main limiting factor is still the poor conductivity of the support which leads to overpotential.
|
Nov 2020
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Georg
Held
,
Federica
Venturini
,
David C.
Grinter
,
Pilar
Ferrer
,
Rosa
Arrigo
,
Liam
Deacon
,
Wilson
Quevedo Garzon
,
Kanak
Roy
,
Alex
Large
,
Christopher
Stephens
,
Andrew
Watts
,
Paul
Larkin
,
Matthew
Hand
,
Hongchang
Wang
,
Linda
Pratt
,
James J.
Mudd
,
Thomas
Richardson
,
Suren
Patel
,
Michael
Hillman
,
Stewart
Scott
Open Access
Abstract: The ambient-pressure endstation and branchline of the Versatile Soft X-ray (VerSoX) beamline B07 at Diamond Light Source serves a very diverse user community studying heterogeneous catalysts, pharmaceuticals and biomaterials under realistic conditions, liquids and ices, and novel electronic, photonic and battery materials. The instrument facilitates studies of the near-surface chemical composition, electronic and geometric structure of a variety of samples using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy in the photon energy range from 170 eV to 2800 eV. The beamline provides a resolving power hν/Δ(hν) > 5000 at a photon flux > 1010 photons s−1 over most of its energy range. By operating the optical elements in a low-pressure oxygen atmosphere, carbon contamination can be almost completely eliminated, which makes the beamline particularly suitable for carbon K-edge NEXAFS. The endstation can be operated at pressures up to 100 mbar, whereby XPS can be routinely performed up to 30 mbar. A selection of typical data demonstrates the capability of the instrument to analyse details of the surface composition of solid samples under ambient-pressure conditions using XPS and NEXAFS. In addition, it offers a convenient way of analysing the gas phase through X-ray absorption spectroscopy. Short XPS spectra can be measured at a time scale of tens of seconds. The shortest data acquisition times for NEXAFS are around 0.5 s per data point.
|
Sep 2020
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
B18-Core EXAFS
I20-EDE-Energy Dispersive EXAFS (EDE)
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Rachel H.
Blackmore
,
Maria Elena
Rivas
,
George F.
Tierney
,
Khaled M. H.
Mohammed
,
Donato
Decarolis
,
Shusaku
Hayama
,
Federica
Venturini
,
Georg
Held
,
Rosa
Arrigo
,
Monica
Amboage
,
Pip
Hellier
,
Evan
Lynch
,
Mahrez
Amri
,
Marianna
Casavola
,
Tugce
Eralp Erden
,
Paul
Collier
,
Peter P.
Wells
Diamond Proposal Number(s):
[20129, 20200, 22063, 15151]
Open Access
Abstract: The use of mechanochemistry to prepare catalytic materials is of significant interest; it offers an environmentally beneficial, solvent-free, route and produces highly complex structures of mixed amorphous and crystalline phases. This study reports on the effect of milling atmosphere, either air or argon, on mechanochemically prepared LaMnO3 and the catalytic performance towards N2O decomposition (deN2O). In this work, high energy resolution fluorescence detection (HERFD), X-ray absorption near edge structure (XANES), X-ray emission, and X-ray photoelectron spectroscopy (XPS) have been used to probe the electronic structural properties of the mechanochemically prepared materials. Moreover, in situ studies using near ambient pressure (NAP)-XPS, to follow the materials during catalysis, and high pressure energy dispersive EXAFS studies, to mimic the preparation conditions, have also been performed. The studies show that there are clear differences between the air and argon milled samples, with the most pronounced changes observed using NAP-XPS. The XPS results find increased levels of active adsorbed oxygen species, linked to the presence of surface oxide vacancies, for the sample prepared in argon. Furthermore, the argon milled LaMnO3 shows improved catalytic activity towards deN2O at lower temperatures compared to the air milled and sol–gel synthesised LaMnO3. Assessing this improved catalytic behaviour during deN2O of argon milled LaMnO3 by in situ NAP-XPS suggests increased interaction of N2O at room temperature within the O 1s region. This study further demonstrates the complexity of mechanochemically prepared materials and through careful choice of characterisation methods how their properties can be understood.
|
Jun 2020
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
E01-JEM ARM 200CF
|
Gianfranco
Giorgianni
,
Chalachew
Mebrahtu
,
Manfred E.
Schuster
,
Alexander I.
Large
,
Georg
Held
,
Pilar
Ferrer
,
Federica
Venturini
,
David
Grinter
,
Regina
Palkovits
,
Siglinda
Perathoner
,
Gabriele
Centi
,
Salvatore
Abate
,
Rosa
Arrigo
Diamond Proposal Number(s):
[19472]
Abstract: Hydrotalcite-derived Ni and Fe-promoted hydrotalcite-derived Ni catalysts were found to outperform industrial catalysts in the CO2 methanation reaction, however the origin of the improved activity and selectivity of these catalysts is not clear. Here, we report a study of these systems by means of in situ X-ray photoelectron spectroscopy and near-edge X-ray absorption spectroscopy elucidating the chemical nature of the catalysts` surface under reaction conditions and revealing the mechanism by which Fe promotes activity and selectivity towards methane. We show that the increase of the conversion leads to hydroxylation of the Ni surface following the formation of water during the reaction. This excessive Ni surface hydroxylation has however a detrimental effect as shown by a controlled study. A dominant metallic Ni surface exists in conditions of higher selectivity towards methane whereas if an increase of the Ni surface hydroxylation occurs, a higher selectivity towards carbon monoxide is observed. The electronic structure analysis of the Fe species under reaction conditions reveals the existence of predominantly Fe(III) species at the surface, whereas a mixture of Fe(II)/Fe(III) species is present underneath the surface. Our results highlight that Fe(II) exerts a beneficial effect on maintaining Ni in a metallic state, whereas the extension of the Fe oxidation front from the surface towards the bulk is accompanied by a more extended Ni surface hydroxylation with a negative impact on the selectivity towards methane.
|
Apr 2020
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
B18-Core EXAFS
E01-JEM ARM 200CF
|
Rosa
Arrigo
,
Simone
Gallarati
,
Manfred E.
Schuster
,
Jake
Seymour
,
Diego
Gianolio
,
Ivan
Da Silva
,
June
Callison
,
Haosheng
Feng
,
John E.
Proctor
,
Pilar
Ferrer
,
Federica
Venturini
,
Dave
Grinter
,
Georg
Held
Open Access
Abstract: Unsupported and SiO 2 ‐supported Ni nanoparticles (NPs), were synthesised via hot‐injection colloidal route using oleylamine (OAm) and trioctylphosphine (TOP) as reducing and protective agents, respectively. By adopting a multi‐length scale structural characterization, it was found that by changing equivalents of OAM and TOP not only the size of the nanoparticles is affected but also the Ni electronic structure. The synthetized NPs were modified with ( R , R )‐tartaric acid (TA) and investigated in the asymmetric hydrogenation of methyl acetoacetate to chiral methyl‐3‐hydroxy butyrate. The comparative analysis of structure and catalytic performance for the synthetized catalysts has enabled us to identify a Ni metallic active surface, whereby the activity increases with the size of the metallic domains. Conversely, at the high conversion obtained for the unsupported NPs there was no impact of particle size on the selectivity. ( R )‐selectivity was very high only on catalysts containing positively charged Ni species such as over the SiO 2 ‐supported NiO NPs. This work shows that the chiral modification of metallic Ni NPs with TA is insufficient to maintain high selectivity towards the ( R )‐enantiomer at long reaction time and provide guidance for the engineering of long‐term stable enantioselective catalysts.
|
Dec 2019
|
|
E01-JEM ARM 200CF
|
Open Access
Abstract: Wet impregnation is broadly applied for the synthesis of carbon-supported metal/metal oxide nanostructures because of its high flexibility, simplicity and low cost. By contrast, impregnated catalysts are typified by a usually undesired nanostructural and morphological heterogeneity of the supported phase resulting from a poor stabilization at the support surface. This study on graphite-supported Fe-based materials from Fe nitrate precursor is concerned with the understanding of the chemistry that dictates during the multistep synthesis, which is key to designing structurally homogeneous catalysts. By means of core-level X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy and atomic resolution electron microscopy, we found not only a large variety of particles sizes and morphologies but also chemical phases. Herein, thermally stable single atoms and few atoms clusters are identified together with large agglomerates of an oxy-hydroxide ferrihydrite-like phase. Moreover, the thermally induced phase transformation of the initially poorly ordered oxy-hydroxide phase into several oxide phases is revealed, together with the existence of thermally stable N impurities retained in the structure as Fe–N–O bonds. The nature of the interactions with the support and the structural dynamics induced by the thermal treatment rationalize the high heterogeneity observed in these catalysts.
|
Mar 2019
|
|
Optics
|
Matthew
Hand
,
Hongchang
Wang
,
Maria
Harkiolaki
,
Federica
Venturini
,
Rosa
Arrigo
,
Pilar
Ferrer Escorihuela
,
Simon
Alcock
,
Ioana
Nistea
,
Andy
Marshall
,
Stewart
Scott
,
Liz
Duke
,
Georg
Held
,
Kawal
Sawhney
Open Access
Abstract: Synchrotron radiation is emitted from a bending magnet source in a wide ray fan which is collected by the first optical element in a beamline. In order to maximize angular acceptance, and hence flux, it is beneficial to increase the length of this mirror and optical design requirements may necessitate that the optical surface be over 1 m in length. Such mirrors also require cooling as they may be subject to high heat loads from the incident radiation. Two beamlines, B07 and B24, at Diamond Light Source, UK, use 1.4 m long toroidal mirrors which utilize a similar side-clamped cooling manifold design. While this scheme has been successful in providing effective cooling of the mirror, it has also been discovered that it introduces deformation of the radius of curvature which is sufficient to alter the focusing characteristics of the mirror. At both beamlines, the horizontal focus of the beam was found to differ by up to several meter from the design position at the exit slit which resulted in poor flux throughput, reduced energy resolution and other side effects. A pencil beam scan method has been used to diagnose this issue and infer the position of the focus and mirror shape. Through the use of a standalone chiller to alter the temperature of the water within the cooling loop, it has been possible to correct the distortion of the radius and restore the focus to its nominal position.
|
Jan 2019
|
|
|
Juan-jesús
Velasco-vélez
,
Travis E.
Jones
,
Dunfeng
Gao
,
Emilia
Carbonio
,
Rosa
Arrigo
,
Cheng-jhih
Hsu
,
Yu-cheng
Huang
,
Chung Li
Dong
,
Jin-ming
Chen
,
Jyh-fu
Lee
,
Peter
Strasser
,
Beatriz
Roldan-cuenya
,
Robert
Schloegl
,
Axel
Knop-gericke
,
Cheng-hao
Chuang
Abstract: Redox-active copper catalysts with accurately prepared oxidation states (Cu0, Cu+ and Cu2+) and high selectivity to C2 hydrocarbon formation, from electrocatalytic cathodic reduction of CO2, were fabricated and characterized. The electrochemically prepared copper-redox electro-cathodes yield higher activity for the production of hydrocarbons at lower oxidation state. By combining advanced X-ray spectroscopy and in situ micro-reactors it was possible to unambiguously reveal the variation in the complex electronic structure that the catalysts undergo at different stages (i.e. during fabrication and electrocatalytic reactions). It was found that the surface, sub-surface and bulk properties of the electrochemically prepared catalysts are dominated by the formation of copper carbonates on the surface of cupric-like oxides, which prompts catalyst deactivation by restraining effective charge transport. Furthermore, the formation of reduced or partially-reduced copper catalysts yields the key dissociative proton-consuming reactive adsorption of CO2 to produce CO; allowing the subsequent hydrogenation into C2 and C1 products by dimerization and protonation. These results yield valuable information on the variations in the electronic structure that redox-active copper catalysts undergo in the course of the electrochemical reaction, which, under extreme conditions are mediated by thermodynamics but, critically, kinetics dominate near the oxide/metal phase transitions.
|
Nov 2018
|
|
|
J. J.
Velasco-vélez
,
T. E.
Jones
,
V.
Streibel
,
M.
Hävecker
,
C.-h.
Chuang
,
L.
Frevel
,
M.
Plodinec
,
A.
Centeno
,
A.
Zurutuza
,
R.
Wang
,
R.
Arrigo
,
R.
Mom
,
S.
Hofmann
,
R.
Schlögl
,
A.
Knop-gericke
Abstract: An electrode for the oxygen evolution reaction based on a conductive bi-layered free standing graphene support functionalized with iridium nanoparticles was fabricated and characterized by means of potentiometric and advanced X-ray spectroscopic techniques. It was found that the electrocatalytic activity of iridium nanoparticles is associated to the formation of Ir 5d electron holes. Strong Ir 5d and O 2p hybridization, however, leads to a concomitant increase O 2p hole character, making oxygen electron deficient and susceptible to nucleophilic attack by water. Consequently, more efficient electrocatalysts can be synthesized by increasing the number of electron-holes shared between the metal d and oxygen 2p.
|
Oct 2018
|
|