B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
B18-Core EXAFS
|
Diamond Proposal Number(s):
[35991, 33143]
Abstract: Achieving efficient water-splitting under acidic conditions for hydrogen production is severely limited by the anodic oxygen evolution reaction (OER). Overcoming this obstacle is vital to realise effective electrolysers and deliver a hydrogen-driven economy. Iridium oxides remain one of the only viable catalysts under acidic conditions due to their corrosion resistance, however, a fine balance exists between the activity and stability of differing oxide morphologies. We have previously shown that heat-treating high-activity amorphous iridium oxyhydroxide in the presence of residual lithium carbonate leads to the formation of lithium-layered iridium oxide, suppressing the formation of low-activity crystalline rutile IrO2. We now report our recent work on the synthesis of similar compounds, Na-IrOx and K-IrOx, featuring similarly layered crystalline structures. Electrocatalytic tests confirm Li-IrOx has similar electrocatalytic activity as commercial amorphous IrO2·2H2O and with increasing size of the intercalated cation, the activity towards the OER decreases. However, the synthesised electrocatalysts show greater stability than crystalline rutile IrO2 and amorphous IrO2·2H2O, suggesting these compounds could be viable alternatives for industrial PEM electrolysers where durability is a key performance criterion.
|
Aug 2024
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[28630]
Open Access
Abstract: In this study, nickel nanoparticles were successfully synthesized using two methods: the hot-injection method and a room temperature colloidal synthesis using dioctyl tartrate as a capping agent. Each approach yielded Ni nanoparticles with unique morphological and electronic properties. The distinct characteristics of these Ni nanoparticles make them promising candidates for unravelling structure/activity relationships, a crucial aspect in developing catalysts with enhanced selectivity. Ni nanoparticles synthesized via these methods were supported on silica and activated charcoal, with variations in Ni loadings. We explored the impact of nanostructural characteristic of the Ni nanoparticles as well as support effects on the selective hydrogenation of furfural. Using temperature programmed reduction, advanced X-ray absorption spectroscopy, and atom-resolved electron microscopy techniques, we established comprehensive structure-function relationships. We demonstrate that via dioctyl tartrate route, foam-like Ni nanostructures are obtained, yielding higher selectivity towards selective hydrogenation than commercial Ni/Al2O3 and suppression of acid-base catalysed acetalization and etherification. Furthermore, conversions similar to commercial Ni/Al2O3 are achieved using a lower Ni loading. These insights provide valuable guidance for the design of enhanced materials, contributing to the optimization of catalyst performance in selective hydrogenation processes. This research marks a significant step toward the development of more efficient and sustainable catalytic processes.
|
Jun 2024
|
|
B18-Core EXAFS
|
Diego
Gianolio
,
Michael D.
Higham
,
Matthew G.
Quesne
,
Matteo
Aramini
,
Ruoyu
Xu
,
Alex I.
Large
,
Georg
Held
,
Juan-Jesús
Velasco-Vélez
,
Michael
Haevecker
,
Axel
Knop-Gericke
,
Chiara
Genovese
,
Claudio
Ampelli
,
Manfred Erwin
Schuster
,
Siglinda
Perathoner
,
Gabriele
Centi
,
C. Richard A.
Catlow
,
Rosa
Arrigo
Diamond Proposal Number(s):
[24919]
Open Access
Abstract: Operando soft and hard X-ray spectroscopic techniques were used in combination with plane-wave density functional theory (DFT) simulations to rationalize the enhanced activities of Zn-containing Cu nanostructured electrocatalysts in the electrocatalytic CO2 hydrogenation reaction. We show that at a potential for CO2 hydrogenation, Zn is alloyed with Cu in the bulk of the nanoparticles with no metallic Zn segregated; at the interface, low reducible Cu(I)–O species are consumed. Additional spectroscopic features are observed, which are identified as various surface Cu(I) ligated species; these respond to the potential, revealing characteristic interfacial dynamics. Similar behavior was observed for the Fe–Cu system in its active state, confirming the general validity of this mechanism; however, the performance of this system deteriorates after successive applied cathodic potentials, as the hydrogen evolution reaction then becomes the main reaction pathway. In contrast to an active system, Cu(I)–O is now consumed at cathodic potentials and not reversibly reformed when the voltage is allowed to equilibrate at the open-circuit voltage; rather, only the oxidation to Cu(II) is observed. We show that the Cu–Zn system represents the optimal active ensembles with stabilized Cu(I)–O; DFT simulations rationalize this observation by indicating that Cu–Zn–O neighboring atoms are able to activate CO2, whereas Cu–Cu sites provide the supply of H atoms for the hydrogenation reaction. Our results demonstrate an electronic effect exerted by the heterometal, which depends on its intimate distribution within the Cu phase and confirms the general validity of these mechanistic insights for future electrocatalyst design strategies.
|
Apr 2023
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Diamond Proposal Number(s):
[22687]
Open Access
Abstract: Designing CO2 methanation catalysts that meet industrial requirements is still challenging. We report Ni-Fe hydrotalcite-derived catalysts with a wide range of Ni and Mg loadings showing that an optimised composition with Ni0.4 gives a very high CO2 conversion rate of 0.37 mmol/gcat/s at 300°C. This catalyst is studied by in-situ APXPS and NEXAFS spectroscopies and compared with the other synthesised samples to obtain new mechanistic insights on methanation catalysts active for low-temperature (300°C) methanation, which is an industrial requirement. Under methanation conditions, in-situ investigations revealed the presence of metallic Ni sites and low nuclearity Ni-Fe species at
(Ni loading) = 21.2 mol%. These sites are oxidised on the low Ni-loaded catalyst (
= 9.2 mol%). The best CO2 conversion rate and CH4 selectivity are shown at intermediate
(21.2 mol%), in the presence of Mg. These superior performances are related to the high metallic surface area, dispersion, and optimal density of basic sites. The
(turnover frequency of CO2 conversion) increases exponentially with the fractional density of basic to metallic sites (
) from 1.1 s-1 (
= 29.2 mol%) to 9.1 s-1 (
= 7.6 mol%). It follows the opposite trend of the CO2 conversion rate. In-situ DRIFTS data under methanation conditions evidence that the
at high
is related to the presence of a formate route which is not predominant at low
(high
). A synergistic interplay of basic and metallic sites is present. This contribution provides a rationale for designing industrially competitive CO2 methanation catalysts with high catalytic activity while maintaining low Ni loading.
|
Mar 2023
|
|
B18-Core EXAFS
|
Jonathan
Ruiz Esquius
,
David J.
Morgan
,
Gerardo
Algara Siller
,
Diego
Gianolio
,
Matteo
Aramini
,
Leopold
Lahn
,
Olga
Kasian
,
Simon A.
Kondrat
,
Robert
Schlögl
,
Graham J.
Hutchings
,
Rosa
Arrigo
,
Simon J.
Freakley
Diamond Proposal Number(s):
[15151]
Open Access
Abstract: The oxygen evolution reaction (OER) is crucial to future energy systems based on water electrolysis. Iridium oxides are promising catalysts due to their resistance to corrosion under acidic and oxidizing conditions. Highly active iridium (oxy)hydroxides prepared using alkali metal bases transform into low activity rutile IrO2 at elevated temperatures (>350 °C) during catalyst/electrode preparation. Depending on the residual amount of alkali metals, we now show that this transformation can result in either rutile IrO2 or nano-crystalline Li-intercalated IrOx. While the transition to rutile results in poor activity, the Li-intercalated IrOx has comparative activity and improved stability when compared to the highly active amorphous material despite being treated at 500 °C. This highly active nanocrystalline form of lithium iridate could be more resistant to industrial procedures to produce PEM membranes and provide a route to stabilize the high populations of redox active sites of amorphous iridium (oxy)hydroxides.
|
Mar 2023
|
|
B07-B1-Versatile Soft X-ray beamline: High Throughput ES1
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Open Access
|
Jul 2022
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Simon
Astley
,
Di
Hu
,
Kerry
Hazeldine
,
Johnathan
Ash
,
Rachel E.
Cross
,
Simon
Cooil
,
Martin W.
Allen
,
James
Evans
,
Kelvin
James
,
Federica
Venturini
,
David C.
Grinter
,
Pilar
Ferrer
,
Rosa
Arrigo
,
Georg
Held
,
Gruffudd T.
Williams
,
D. Andrew
Evans
Diamond Proposal Number(s):
[18182]
Open Access
Abstract: Photoelectron spectroscopy is a powerful characterisation tool for semiconductor surfaces and interfaces, providing in principle a correlation between the electronic band structure and surface chemistry along with quantitative parameters such as the electron affinity, interface potential, band bending and band offsets. However, measurements are often limited to ultrahigh vacuum and only the top few atomic layers are probed. The technique is seldom applied as an in situ probe of surface processing; information is usually provided before and after processing in a separate environment, leading to a reduction in reproducibility. Advances in instrumentation, in particular electron detection has enabled these limitations to be addressed, for example allowing measurement at near-ambient pressures and the in situ, real-time monitoring of surface processing and interface formation. A further limitation is the influence of the measurement method through irreversible chemical effects such as radiation damage during X-ray exposure and reversible physical effects such as the charging of low conductivity materials. For wide-gap semiconductors such as oxides and carbon-based materials, these effects can be compounded and severe. Here we show how real-time and near-ambient pressure photoelectron spectroscopy can be applied to identify and quantify these effects, using a gold alloy, gallium oxide and semiconducting diamond as examples. A small binding energy change due to thermal expansion is followed in real-time for the alloy while the two semiconductors show larger temperature-induced changes in binding energy that, although superficially similar, are identified as having different and multiple origins, related to surface oxygen bonding, surface band-bending and a room-temperature surface photovoltage. The latter affects the p-type diamond at temperatures up to 400 °C when exposed to X-ray, UV and synchrotron radiation and under UHV and 1 mbar of O2. Real-time monitoring and near-ambient pressure measurement with different excitation sources has been used to identify the mechanisms behind the observed changes in spectral parameters that are different for each of the three materials. Corrected binding energy values aid the completion of the energy band diagrams for these wide-gap semiconductors and provide protocols for surface processing to engineer key surface and interface parameters.
|
May 2022
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Andree
Iemhoff
,
Maurice
Vennewald
,
Jens
Artz
,
Chalachew
Mebrahtu
,
Alexander
Meledin
,
Thomas E.
Weirich
,
Heinrich
Hartmann
,
Astrid
Besmehn
,
Matteo
Aramini
,
Federica
Venturini
,
Fred
Mosselmans
,
Georg
Held
,
Rosa
Arrigo
,
Regina
Palkovits
Diamond Proposal Number(s):
[26053, 26030]
Open Access
Abstract: Stabilization of single metal atoms is a persistent challenge in heterogeneous catalysis. Especially supported late transitions metals are prone to undergo agglomeration to nanoparticles under reducing conditions. In this study, nitrogen-rich covalent triazine frameworks (CTFs) are used to immobilize iridium complexes. Upon reduction at 400°C, immobilized Ir(acac)(COD) on CTF does not form nanoparticles but transforms into a highly active Ir single atom catalyst. The resulting catalyst systems outperforms both the immobilized complex and supported nanoparticles in the dehydrogenation of formic acid as probe reaction. This superior performance could be traced back to decisive changes of the coordination geometry positively influencing activity, selectivity and stability. Spectroscopic analysis reveals an increase of electron density on the cationic iridium site by donation from the CTF macroligand after removal of the organic ligand sphere from the Ir(acac)(COD) precursor complex upon reductive treatment. This work demonstrates the ability of nitrogen moieties to stabilize molecular metal species against agglomeration and opens avenues for catalysts design using isolated sites in high-temperature applications under reducing atmosphere.
|
Mar 2022
|
|
|
Abstract: The electrocatalytic conversion of CO2 to fuels and chemicals using renewable energy is a key decarbonization technology. From a technological viewpoint, the realization of such process in the gas phase and at room temperature is considered advantageous as it allows to circumvent the limited CO2 solubility in liquid electrolytes and CO2 transport across the electrical double layer. Yet, electrocatalysts´ performances reported so far are promising but not satisfactory. In this study, we apply ambient pressure X-ray photoelectron and absorption spectroscopies coupled with on-line gas detection via mass spectrometry to investigate in situ performance and interface chemistry of an electrodeposited Cu on graphitic carbon support under conditions of CO2 reduction. We use the ISISS beamline at the synchrotron facility BESSY II of the HZB and the electrochemical cell based on polymeric electrolyte membrane previously developed. We show that under cathodic potential in which methanol is formed, a fraction of the electrode with a predominantly Cu(I) electronic structure undergoes reduction to metallic Cu. The C speciation is characterized by C-O and sp3CH3 species whereas no atomic C was formed under this condition. We also show the important role of water in the formation of methanol from accumulated surface CH3 species.
|
Feb 2022
|
|
B18-Core EXAFS
|
Peng
Tang
,
Hyeon Jeong
Lee
,
Kevin
Hurlbutt
,
Po-Yuan
Huang
,
Sudarshan
Narayanan
,
Chenbo
Wang
,
Diego
Gianolio
,
Rosa
Arrigo
,
Jun
Chen
,
Jamie H.
Warner
,
Mauro
Pasta
Diamond Proposal Number(s):
[26066]
Open Access
Abstract: Platinum single-site catalysts (SSCs) are a promising technology for the production of hydrogen from clean energy sources. They have high activity and maximal platinum-atom utilization. However, the bonding environment of platinum during operation is poorly understood. In this work, we present a mechanistic study of platinum SSCs using operando, synchrotron-X-ray absorption spectroscopy. We synthesize an atomically dispersed platinum complex with aniline and chloride ligands onto graphene and characterize it with ex-situ electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, X-ray absorption near-edge structure spectroscopy (XANES), and extended X-ray absorption fine structure spectroscopy (EXAFS). Then, by operando EXAFS and XANES, we show that as a negatively biased potential is applied, the Pt–N bonds break first followed by the Pt–Cl bonds. The platinum is reduced from platinum(II) to metallic platinum(0) by the onset of the hydrogen-evolution reaction at 0 V. Furthermore, we observe an increase in Pt–Pt bonding, indicating the formation of platinum agglomerates. Together, these results indicate that while aniline is used to prepare platinum SSCs, the single-site complexes are decomposed and platinum agglomerates at operating potentials. This work is an important contribution to the understanding of the evolution of bonding environment in SSCs and provides some molecular insights into how platinum agglomeration causes the deactivation of SSCs over time.
|
Feb 2022
|
|