I04-Macromolecular Crystallography
|
Olga V.
Moroz
,
Elena
Blagova
,
Andrey A.
Lebedev
,
Filomeno
Sanchez Rodriguez
,
Daniel J.
Rigden
,
Jeppe
Wegener Tams
,
Reinhard
Wilting
,
Jan Kjølhede
Vester
,
Emily
Longhi
,
Gustav
Hammerich Hansen
,
Kristian
Bertel Rømer Mørkeberg Krogh
,
Roland A.
Pache
,
Gideon
Davies
,
Keith S.
Wilson
Diamond Proposal Number(s):
[18598]
Abstract: β-Galactosidases catalyse the hydrolysis of lactose into galactose and glucose; as an alternative reaction, some β-galactosidases also catalyse the formation of galactooligosaccharides by transglycosylation. Both reactions have industrial importance: lactose hydrolysis is used to produce lactose-free milk, while galactooligosaccharides have been shown to act as prebiotics. For some multi-domain β-galactosidases, the hydrolysis/transglycosylation ratio can be modified by the truncation of carbohydrate-binding modules. Here, an analysis of BbgIII, a multidomain β-galactosidase from Bifidobacterium bifidum, is presented. The X-ray structure has been determined of an intact protein corresponding to a gene construct of eight domains. The use of evolutionary covariance-based predictions made sequence docking in low-resolution areas of the model spectacularly easy, confirming the relevance of this rapidly developing deep-learning-based technique for model building. The structure revealed two alternative orientations of the CBM32 carbohydrate-binding module relative to the GH2 catalytic domain in the six crystallographically independent chains. In one orientation the CBM32 domain covers the entrance to the active site of the enzyme, while in the other orientation the active site is open, suggesting a possible mechanism for switching between the two activities of the enzyme, namely lactose hydrolysis and transgalactosylation. The location of the carbohydrate-binding site of the CBM32 domain on the opposite site of the module to where it comes into contact with the catalytic GH2 domain is consistent with its involvement in adherence to host cells. The role of the CBM32 domain in switching between hydrolysis and transglycosylation modes offers protein-engineering opportunities for selective β-galactosidase modification for industrial purposes in the future.
|
Dec 2021
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I24-Microfocus Macromolecular Crystallography
|
Olga V.
Moroz
,
Elena
Blagova
,
Edward
Taylor
,
Johan
Turkenburg
,
Lars K.
Skov
,
Garry P.
Gippert
,
Kirk M.
Schnorr
,
Li
Ming
,
Liu
Ye
,
Mikkel
Klausen
,
Marianne T.
Cohn
,
Esben G. W.
Schmidt
,
Søren
Nymand-Grarup
,
Gideon J.
Davies
,
Keith S.
Wilson
Diamond Proposal Number(s):
[13587, 7864]
Open Access
Abstract: Muramidases/lysozymes hydrolyse the peptidoglycan component of the bacterial cell wall. They are found in many of the glycoside hydrolase (GH) families. Family GH25 contains muramidases/lysozymes, known as CH type lysozymes, as they were initially discovered in the Chalaropsis species of fungus. The characterized enzymes from GH25 exhibit both β-1,4-N-acetyl- and β-1,4-N,6-O-diacetylmuramidase activities, cleaving the β-1,4-glycosidic bond between N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) moieties in the carbohydrate backbone of bacterial peptidoglycan. Here, a set of fungal GH25 muramidases were identified from a sequence search, cloned and expressed and screened for their ability to digest bacterial peptidoglycan, to be used in a commercial application in chicken feed. The screen identified the enzyme from Acremonium alcalophilum JCM 736 as a suitable candidate for this purpose and its relevant biochemical and biophysical and properties are described. We report the crystal structure of the A. alcalophilum enzyme at atomic, 0.78 Å resolution, together with that of its homologue from Trichobolus zukalii at 1.4 Å, and compare these with the structures of homologues. GH25 enzymes offer a new solution in animal feed applications such as for processing bacterial debris in the animal gut.
|
Mar 2021
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: α-mannoside β-1,6-N-acetylglucosaminyltransferase V (MGAT5) is a mammalian glycosyltransferase involved in complex N-glycan formation, which strongly drives cancer when overexpressed. Despite intense interest, the catalytic mechanism of MGAT5 is not known in detail, precluding therapeutic exploitation. We solved structures of MGAT5 complexed to glycosyl donor and acceptor ligands, revealing an unforeseen role for donor induced loop rearrangements in controlling acceptor substrate engagement. QM/MM metadynamics simulations of MGAT5 catalysis highlight the key assisting role of Glu297, and reveal considerable conformational distortions imposed upon the glycosyl donor during transfer. Detailed mechanistic characterization of MGAT5 will aid inhibitor development to correct cancer associated N-glycosylation.
|
Jul 2020
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: Sialic acids are a family of related sugars that play essential roles in many biological events intimately linked to cellular recognition in both health and disease. Sialidases are therefore orchestrators of cellular biology and important therapeutic targets for viral infection. Here, we sought to define if uncharacterized sialidases would provide distinct paradigms in sialic acid biochemistry. We show that a recently discovered sialidase family, whose first member EnvSia156 was isolated from hot spring metagenomes, defines an unusual structural fold and active centre constellation, not previously described in sialidases. Consistent with an inverting mechanism, EnvSia156 reveals a His/Asp active center in which the His acts as a Brønsted acid and Asp as a Brønsted base in a single-displacement mechanism. A predominantly hydrophobic aglycone site facilitates accommodation of a variety of 2-linked sialosides; a versatility that offers the potential for glycan hydrolysis across a range of biological and technological platforms.
|
Oct 2019
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Olga V.
Moroz
,
Elena
Blagova
,
Verena
Reiser
,
Rakhi
Saikia
,
Sohel
Dalal
,
Christian Isak
Jørgensen
,
Vikram K.
Bhatia
,
Lone
Baunsgaard
,
Birgitte
Andersen
,
Allan
Svendsen
,
Keith S.
Wilson
Diamond Proposal Number(s):
[7864, 9948]
Open Access
Abstract: Many proteins are synthesized as precursors, with propeptides playing a variety of roles such as assisting in folding or preventing them from being active within the cell. While the precise role of the propeptide in fungal lipases is not completely understood, it was previously reported that mutations in the propeptide region of the Rhizomucor miehei lipase have an influence on the activity of the mature enzyme, stressing the importance of the amino acid composition of this region. We here report two structures of this enzyme in complex with its propeptide, which suggests that the latter plays a role in the correct maturation of the enzyme. Most importantly, we demonstrate that the propeptide shows inhibition of lipase activity in standard lipase assays and propose that an important role of the propeptide is to ensure that the enzyme is not active during its expression pathway in the original host.
|
Jun 2019
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Sybrin P.
Schröder
,
Casper
De Boer
,
Nicholas G. S.
Mcgregor
,
Rhianna J.
Rowland
,
Olga
Moroz
,
Elena
Blagova
,
Jos
Reijngoud
,
Mark
Arentshorst
,
David
Osborn
,
Marc D.
Morant
,
Eric
Abbate
,
Mary A.
Stringer
,
Kristian B. R. M.
Krogh
,
Lluís
Raich
,
Carme
Rovira
,
Jean-Guy
Berrin
,
Gilles P.
Van Wezel
,
Arthur F. J.
Ram
,
Bogdan I.
Florea
,
Gijsbert A.
Van Der Marel
,
Jeroen D. C.
Codée
,
Keith S.
Wilson
,
Liang
Wu
,
Gideon J.
Davies
,
Herman S.
Overkleeft
Diamond Proposal Number(s):
[13587]
Abstract: Plant polysaccharides represent a virtually unlimited feedstock for the generation of biofuels and other commodities. However, the extraordinary recalcitrance of plant polysaccharides toward breakdown necessitates a continued search for enzymes that degrade these materials efficiently under defined conditions. Activity-based protein profiling provides a route for the functional discovery of such enzymes in complex mixtures and under industrially relevant conditions. Here, we show the detection and identification of β-xylosidases and endo-β-1,4-xylanases in the secretomes of Aspergillus niger, by the use of chemical probes inspired by the β-glucosidase inhibitor cyclophellitol. Furthermore, we demonstrate the use of these activity-based probes (ABPs) to assess enzyme–substrate specificities, thermal stabilities, and other biotechnologically relevant parameters. Our experiments highlight the utility of ABPs as promising tools for the discovery of relevant enzymes useful for biomass breakdown.
|
May 2019
|
|
I04-Macromolecular Crystallography
|
Pernille
Von Freiesleben
,
Olga V.
Moroz
,
Elena
Blagova
,
Mathias
Wiemann
,
Nikolaj
Spodsberg
,
Jane W.
Agger
,
Gideon J.
Davies
,
Keith S.
Wilson
,
Henrik
Stålbrand
,
Anne S.
Meyer
,
Kristian B. R. M.
Krogh
Diamond Proposal Number(s):
[13587]
Open Access
Abstract: Endo-β(1 → 4)-mannanases (endomannanases) catalyse degradation of β-mannans, an abundant class of plant polysaccharides. This study investigates structural features and substrate binding of YpenMan26A, a non-CBM carrying endomannanase from Yunnania penicillata. Structural and sequence comparisons to other fungal family GH26 endomannanases showed high sequence similarities and conserved binding residues, indicating that fungal GH26 endomannanases accommodate galactopyranosyl units in the −3 and −2 subsites. Two striking amino acid differences in the active site were found when the YpenMan26A structure was compared to a homology model of Wsp.Man26A from Westerdykella sp. and the sequences of nine other fungal GH26 endomannanases. Two YpenMan26A mutants, W110H and D37T, inspired by differences observed in Wsp.Man26A, produced a shift in how mannopentaose bound across the active site cleft and a decreased affinity for galactose in the −2 subsite, respectively, compared to YpenMan26A. YpenMan26A was moreover found to have a flexible surface loop in the position where PansMan26A from Podospora anserina has an α-helix (α9) which interacts with its family 35 CBM. Sequence alignment inferred that the core structure of fungal GH26 endomannanases differ depending on the natural presence of this type of CBM. These new findings have implications for selecting and optimising these enzymes for galactomannandegradation.
|
Feb 2019
|
|
I02-Macromolecular Crystallography
|
Nadine
Daou
,
Yuanguo
Wang
,
Vladimir M.
Levdikov
,
Madhumitha
Nandakumar
,
Jonathan
Livny
,
Laurent
Bouillaut
,
Elena
Blagova
,
Keshan
Zhang
,
Boris R.
Belitsky
,
Kyu
Rhee
,
Anthony J.
Wilkinson
,
Xingmin
Sun
,
Abraham L.
Sonenshein
Diamond Proposal Number(s):
[9948]
Open Access
Abstract: Toxin synthesis and endospore formation are two of the most critical factors that determine the outcome of infection by Clostridioides difficile. The two major toxins, TcdA and TcdB, are the principal factors causing damage to the host. Spores are the infectious form of C. difficile, permit survival of the bacterium during antibiotic treatment and are the predominant cell form that leads to recurrent infection. Toxin production and sporulation have their own specific mechanisms of regulation, but they share negative regulation by the global regulatory protein CodY. Determining the extent of such regulation and its detailed mechanism is important for understanding the linkage between two apparently independent biological phenomena and raises the possibility of creating new ways of limiting infection. The work described here shows that a codY null mutant of a hypervirulent (ribotype 027) strain is even more virulent than its parent in a mouse model of infection and that the mutant expresses most sporulation genes prematurely during exponential growth phase. Moreover, examining the expression patterns of mutants producing CodY proteins with different levels of residual activity revealed that expression of the toxin genes is dependent on total CodY inactivation, whereas most sporulation genes are turned on when CodY activity is only partially diminished. These results suggest that, in wild-type cells undergoing nutrient limitation, sporulation genes can be turned on before the toxin genes.
|
Jan 2019
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[13587]
Open Access
Abstract: The enzymatic hydrolysis of complex plant biomass is a major societal goal of the 21st century in order to deliver renewable energy from nonpetroleum and nonfood sources. One of the major problems in many industrial processes, including the production of second-generation biofuels from lignocellulose, is the presence of `hemicelluloses' such as xylans which block access to the cellulosic biomass. Xylans, with a polymeric β-1,4-xylose backbone, are frequently decorated with acetyl, glucuronyl and arabinofuranosyl `side-chain' substituents, all of which need to be removed for complete degradation of the xylan. As such, there is interest in side-chain-cleaving enzymes and their action on polymeric substrates. Here, the 1.25 Å resolution structure of the Talaromyces pinophilus arabinofuranosidase in complex with the inhibitor AraDNJ, which binds with a Kd of 24 ± 0.4 µM, is reported. Positively charged iminosugars are generally considered to be potent inhibitors of retaining glycosidases by virtue of their ability to interact with both acid/base and nucleophilic carboxylates. Here, AraDNJ shows good inhibition of an inverting enzyme, allowing further insight into the structural basis for arabinoxylan recognition and degradation.
|
Aug 2018
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Olga V.
Moroz
,
Pernille Foged
Jensen
,
Sean P
Mcdonald
,
Nicholas
Mcgregor
,
Elena
Blagova
,
Gerard
Comamala
,
Dorotea R.
Segura
,
Lars
Anderson
,
Santhosh M
Vasu
,
Vasudeva P
Rao
,
Lars
Giger
,
Trine Holst
Sørensen
,
Rune Nygaard
Monrad
,
Allan
Svendsen
,
Jens Erik
Nielsen
,
Bernard
Henrissat
,
Gideon
Davies
,
Harry
Brumer
,
Kasper D.
Rand
,
Keith S.
Wilson
Diamond Proposal Number(s):
[7864]
Abstract: The precise catalytic strategies used for the breakdown of the complex bacterial polysaccharide xanthan, an increasingly frequent component of processed human foodstuffs, have remained a mystery. Here we present the characterization of an endo-xanthanase from Paenibacillus sp. 62047. We show that it is a CAZy family 9 glycoside hydrolase (GH9) responsible for the hydrolysis of the xanthan backbone, capable of generating tetrameric xanthan oligosaccharides from polysaccharide lyase family 8 (PL8) xanthan lyase-treated xanthan. 3-D structure determination reveals a complex multi-modular enzyme in which a catalytic (α/α)6 barrel is flanked by an N-terminal "immunoglobulin-like" (Ig-like) domain (frequently found in GH9 enzymes) and by four additional C-terminal all β-sheet domains which have very few homologs in sequence databases and, at least, one of which functions as a new xanthan-binding domain, now termed CBM84. The solution phase conformation and dynamics of the enzyme in the native calcium-bound state and in the absence of calcium were probed experimentally by hydrogen/deuterium exchange mass spectrometry. Measured conformational dynamics were used to guide the protein engineering of enzyme variants with increased stability in the absence of calcium; a property of interest for the potential use of the enzyme in cleaning detergents. The ability of hydrogen/deuterium exchange mass spectrometry to pinpoint dynamic regions of a protein under stress (e.g. removal of calcium ions) makes this technology a strong tool for improving protein catalyst properties by informed engineering.
|
May 2018
|
|