I04-1-Macromolecular Crystallography (fixed wavelength)
|
Chloe R.
Koulouris
,
Sian E.
Gardiner
,
Tessa K.
Harris
,
Karen T.
Elvers
,
S. Mark
Roe
,
Jason A.
Gillespie
,
Simon E.
Ward
,
Olivera
Grubisha
,
Robert A.
Nicholls
,
John R.
Atack
,
Benjamin D.
Bax
Diamond Proposal Number(s):
[19990]
Open Access
Abstract: Human serine racemase (hSR) catalyses racemisation of L-serine to D-serine, the latter of which is a co-agonist of the NMDA subtype of glutamate receptors that are important in synaptic plasticity, learning and memory. In a ‘closed’ hSR structure containing the allosteric activator ATP, the inhibitor malonate is enclosed between the large and small domains while ATP is distal to the active site, residing at the dimer interface with the Tyr121 hydroxyl group contacting the α-phosphate of ATP. In contrast, in ‘open’ hSR structures, Tyr121 sits in the core of the small domain with its hydroxyl contacting the key catalytic residue Ser84. The ability to regulate SR activity by flipping Tyr121 from the core of the small domain to the dimer interface appears to have evolved in animals with a CNS. Multiple X-ray crystallographic enzyme-fragment structures show Tyr121 flipped out of its pocket in the core of the small domain. Data suggest that this ligandable pocket could be targeted by molecules that inhibit enzyme activity.
|
Apr 2022
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Xiangrong
Chen
,
Yusuf I
Ali
,
Charlotte E. L.
Fisher
,
Raquel
Arribas-Bosacoma
,
Mohan B.
Rajasekaran
,
Gareth
Williams
,
Sarah
Walker
,
Jessica R.
Booth
,
Jessica J R.
Hudson
,
S. Mark
Roe
,
Laurence H.
Pearl
,
Simon E.
Ward
,
Frances M G.
Pearl
,
Antony W.
Oliver
Diamond Proposal Number(s):
[20145]
Open Access
Abstract: BLM (Bloom syndrome protein) is a RECQ-family helicase involved in the dissolution of complex DNA structures and repair intermediates. Synthetic lethality analysis implicates BLM as a promising target in a range of cancers with defects in the DNA damage response; however, selective small molecule inhibitors of defined mechanism are currently lacking. Here, we identify and characterise a specific inhibitor of BLM’s ATPase-coupled DNA helicase activity, by allosteric trapping of a DNA-bound translocation intermediate. Crystallographic structures of BLM-DNA-ADP-inhibitor complexes identify a hitherto unknown interdomain interface, whose opening and closing are integral to translocation of ssDNA, and which provides a highly selective pocket for drug discovery. Comparison with structures of other RECQ helicases provides a model for branch migration of Holliday junctions by BLM.
|
Mar 2021
|
|
I24-Microfocus Macromolecular Crystallography
|
Angeliki
Ditsiou
,
Chiara
Cilibrasi
,
Nikiana
Simigdala
,
Athanasios
Papakyriakou
,
Leanne
Milton-Harris
,
Viviana
Vella
,
Joanne E.
Nettleship
,
Jae Ho
Lo
,
Shivani
Soni
,
Goar
Smbatyan
,
Panagiota
Ntavelou
,
Teresa
Gagliano
,
Maria Chiara
Iachini
,
Sahir
Khurshid
,
Thomas
Simon
,
Lihong
Zhou
,
Storm
Hassell-Hart
,
Philip
Carter
,
Laurence H.
Pearl
,
Robin L.
Owen
,
Raymond J.
Owens
,
S. Mark
Roe
,
Naomi E.
Chayen
,
Heinz-Josef
Lenz
,
John
Spencer
,
Chrisostomos
Prodromou
,
Apostolos
Klinakis
,
Justin
Stebbing
,
Georgios
Giamas
Diamond Proposal Number(s):
[14493]
Open Access
Abstract: Elucidating signaling driven by lemur tyrosine kinase 3 (LMTK3) could help drug development. Here, we solve the crystal structure of LMTK3 kinase domain to 2.1Å resolution, determine its consensus motif and phosphoproteome, unveiling in vitro and in vivo LMTK3 substrates. Via high-throughput homogeneous time-resolved fluorescence screen coupled with biochemical, cellular, and biophysical assays, we identify a potent LMTK3 small-molecule inhibitor (C28). Functional and mechanistic studies reveal LMTK3 is a heat shock protein 90 (HSP90) client protein, requiring HSP90 for folding and stability, while C28 promotes proteasome-mediated degradation of LMTK3. Pharmacologic inhibition of LMTK3 decreases proliferation of cancer cell lines in the NCI-60 panel, with a concomitant increase in apoptosis in breast cancer cells, recapitulating effects of LMTK3 gene silencing. Furthermore, LMTK3 inhibition reduces growth of xenograft and transgenic breast cancer mouse models without displaying systemic toxicity at effective doses. Our data reinforce LMTK3 as a druggable target for cancer therapy.
|
Nov 2020
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[14891]
Abstract: Serine racemase (SR) is a pyridoxal 5′-phosphate (PLP)-containing enzyme that converts L-serine to D-serine, an endogenous co-agonist for the N-methyl-D-aspartate receptor (NMDAR) subtype of glutamate ion channels. SR regulates D-serine levels by the reversible racemization of L-serine to D-serine, as well as the catabolism of serine by α,β-elimination to produce pyruvate. The modulation of SR activity is therefore an attractive therapeutic approach to disorders associated with abnormal glutamatergic signalling since it allows an indirect modulation of NMDAR function. In the present study, a 1.89 Å resolution crystal structure of the human SR holoenzyme (including the PLP cofactor) with four subunits in the asymmetric unit is described. Comparison of this new structure with the crystal structure of human SR with malonate (PDB entry 3l6b) shows an interdomain cleft that is open in the holo structure but which disappears when the inhibitor malonate binds and is enclosed. This is owing to a shift of the small domain (residues 78–155) in human SR similar to that previously described for the rat enzyme. This domain movement is accompanied by changes within the twist of the central four-stranded β-sheet of the small domain, including changes in the φ–ψ angles of all three residues in the C-terminal β-strand (residues 149–151). In the malonate-bound structure, Ser84 (a catalytic residue) points its side chain at the malonate and is preceded by a six-residue β-strand (residues 78–83), but in the holoenzyme the β-strand is only four residues (78–81) and His82 has φ–ψ values in the α-helical region of the Ramachandran plot. These data therefore represent a crystallographic platform that enables the structure-guided design of small-molecule modulators for this important but to date undrugged target.
|
Feb 2020
|
|
I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Abstract: Lithium, which is still the gold standard in the treatment of bipolar disorder, has been proposed to inhibit inositol monophosphatase (IMPase) and is hypothesized to exert its therapeutic effects by attenuating phosphatidylinositol (PI) cell signalling. Drug-discovery efforts have focused on small-molecule lithium mimetics that would specifically inhibit IMPase without exhibiting the undesired side effects of lithium. L-690,330 is a potent bisphosphonate substrate-based inhibitor developed by Merck Sharp & Dohme. To aid future structure-based inhibitor design, determination of the exact binding mechanism of L-690,330 to IMPase was of interest. Here, the high-resolution X-ray structure of human IMPase in complex with L690,330 and manganese ions determined at 1.39 Å resolution is reported.
|
Oct 2018
|
|
B21-High Throughput SAXS
I03-Macromolecular Crystallography
I23-Long wavelength MX
|
Diamond Proposal Number(s):
[14891, 11175]
Open Access
Abstract: Calbindin-D28K is a widely expressed calcium-buffering cytoplasmic protein that is involved in many physiological processes. It has been shown to interact with other proteins, suggesting a role as a calcium sensor. Many of the targets of calbindin-D28K are of therapeutic interest: for example, inositol monophosphatase, the putative target of lithium therapy in bipolar disorder. Presented here is the first crystal structure of human calbindin-D28K. There are significant deviations in the tertiary structure when compared with the NMR structure of rat calbindin-D28K (PDB entry 2g9b), despite 98% sequence identity. Small-angle X-ray scattering (SAXS) indicates that the crystal structure better predicts the properties of calbindin-D28K in solution compared with the NMR structure. Here, the first direct visualization of the calcium-binding properties of calbindin-D28K is presented. Four of the six EF-hands that make up the secondary structure of the protein contain a calcium-binding site. Two distinct conformations of the N-terminal EF-hand calcium-binding site were identified using long-wavelength calcium single-wavelength anomalous dispersion (SAD). This flexible region has previously been recognized as a protein–protein interaction interface. SAXS data collected in both the presence and absence of calcium indicate that there are no large structural differences in the globular structure of calbindin-D28K between the calcium-loaded and unloaded proteins.
|
Oct 2018
|
|
Krios I-Titan Krios I at Diamond
|
Fabrizio
Martino
,
Mohinder
Pal
,
Hugo
Muñoz-Hernández
,
Carlos F.
Rodríguez
,
Rafael
Núñez-Ramírez
,
David
Gil-Carton
,
Gianluca
Degliesposti
,
J. Mark
Skehel
,
Mark
Roe
,
Chrisostomos
Prodromou
,
Laurence H.
Pearl
,
Oscar
Llorca
Diamond Proposal Number(s):
[13312, 13520, 15997]
Open Access
Abstract: The R2TP/Prefoldin-like co-chaperone, in concert with HSP90, facilitates assembly and cellular stability of RNA polymerase II, and complexes of PI3-kinase-like kinases such as mTOR. However, the mechanism by which this occurs is poorly understood. Here we use cryo-EM and biochemical studies on the human R2TP core (RUVBL1–RUVBL2–RPAP3–PIH1D1) which reveal the distinctive role of RPAP3, distinguishing metazoan R2TP from the smaller yeast equivalent. RPAP3 spans both faces of a single RUVBL ring, providing an extended scaffold that recruits clients and provides a flexible tether for HSP90. A 3.6 Å cryo-EM structure reveals direct interaction of a C-terminal domain of RPAP3 and the ATPase domain of RUVBL2, necessary for human R2TP assembly but absent from yeast. The mobile TPR domains of RPAP3 map to the opposite face of the ring, associating with PIH1D1, which mediates client protein recruitment. Thus, RPAP3 provides a flexible platform for bringing HSP90 into proximity with diverse client proteins.
|
Apr 2018
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[10088]
Open Access
Abstract: Tetratricopeptide (TPR) domains are known protein interaction domains. We show that the TPR domain of FKBP8 selectively binds Hsp90, and interactions upstream of the conserved MEEVD motif are critical for tight binding. In contrast FKBP8 failed to bind intact Hsp70. The PPIase domain was not essential for the interaction with Hsp90 and binding was completely encompassed by the TPR domain alone. The conformation adopted by Hsp90 peptides, containing the conserved MEEVD motif, in the crystal structure were similar to that seen for the TPR domains of CHIP, AIP and Tah1. The carboxylate clamp interactions with bound Hsp90 peptide were a critical component of the interaction and mutation of Lys 307, involved in the carboxylate clamp, completely disrupted the interaction with Hsp90. FKBP8 binding to Hsp90 did not substantially influence its ATPase activity.
|
Mar 2017
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8015]
Open Access
Abstract: Client protein recruitment to the Hsp90 system depends on cochaperones that bind the client and Hsp90 simultaneously and facilitate their interaction. Hsp90 involvement in the assembly of snoRNPs, RNA polymerases, PI3-kinase-like kinases, and chromatin remodeling complexes depends on the TTT (Tel2-Tti1-Tti2), and R2TP complexesconsisting of the AAA-ATPases Rvb1 and Rvb2, Tah1 (Spagh/RPAP3 in metazoa), and Pih1 (Pih1D1 in humans)that together provide the connection to Hsp90. The biochemistry underlying R2TP function is still poorly understood. Pih1 in particular, at the heart of the complex, has not been described at a structural level, nor have the multiple protein-protein interactions it mediates been characterized. Here we present a structural and biochemical analysis of Hsp90-Tah1-Pih1, Hsp90-Spagh, and Pih1D1-Tel2 complexes that reveal a domain in Pih1D1 specific for binding CK2 phosphorylation sites, and together define the structural basis by which the R2TP complex connects the Hsp90 chaperone system to the TTT complex.
|
Jun 2014
|
|
I02-Macromolecular Crystallography
|
Abstract: A series of macrolactam analogues of the naturally occurring resorcylic acid lactone radicicol have been synthesised from methyl orsellinate in 7 steps, involving chlorination, protection of the two phenolic groups, and hydrolysis to the benzoic acid. Formation of the dianion and quenching with a Weinreb amide results in acylation of the toluene methyl group that is followed by amide formation and ring closing metathesis to form the macrocyclic lactam. Final deprotection of the phenolic groups gives the desired macrolactams whose binding to the N-terminal domain of yeast Hsp90 was studied by isothermal titration calorimetry and protein X-ray crystallography.
|
Jan 2014
|
|