I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Virginie
Will
,
Lucile
Moynie
,
Elise
Si Ahmed Charrier
,
Audrey
Le Bas
,
Lauriane
Kuhn
,
Florian
Volck
,
Johana
Chicher
,
Hava
Aksoy
,
Morgan
Madec
,
Cyril
Antheaume
,
Gaëtan L. A.
Mislin
,
Isabelle J.
Schalk
Diamond Proposal Number(s):
[33133]
Abstract: Iron is essential for bacterial growth, and Pseudomonas aeruginosa synthesizes the siderophores pyochelin (PCH) and pyoverdine to acquire it. PCH contains a thiazolidine ring that aids in iron chelation but is prone to hydrolysis, leading to the formation of 2-(2-hydroxylphenyl)-thiazole-4-carbaldehyde (IQS). Using mass spectrometry, we demonstrated that PCH undergoes hydrolysis and oxidation in solution, resulting in the formation of aeruginoic acid (AA). This study used proteomic analyses and fluorescent reporters to show that AA, dihydroaeruginoic acid (DHA), and PCH induce the expression of femA, a gene encoding the ferri-mycobactin outer membrane transporter in P. aeruginosa. Notably, the induction by AA and DHA was observed only in strains unable to produce pyoverdine, suggesting their weaker iron-chelating ability compared to that of pyoverdine. 55Fe uptake assays demonstrated that both AA-Fe and DHA-Fe complexes are transported via FemA; however, no uptake was observed for PCH-Fe through this transporter. Structural studies revealed that FemA is able to bind AA2-Fe or DHA2-Fe complexes. Key interactions are conserved between FemA and these two complexes, with specificity primarily driven by one of the two siderophore molecules. Interestingly, although no iron uptake was noted for PCH through FemA, the transporter also binds PCH-Fe in a similar manner. These findings show that under moderate iron deficiency, when only PCH is produced by P. aeruginosa, degradation products AA and DHA enhance iron uptake by inducing femA expression and facilitating iron transport through FemA. This provides new insights into the pathogen’s strategies for iron homeostasis.
|
Mar 2025
|
|
I04-Macromolecular Crystallography
|
Lachlan P.
Deimel
,
Lucile
Moynie
,
Guoxuan
Sun
,
Viliyana
Lewis
,
Abigail
Turner
,
Charles J.
Buchanan
,
Sean A.
Burnap
,
Mikhail
Kutuzov
,
Carolin M.
Kobras
,
Yana
Demyaneko
,
Shabaz
Mohammed
,
Mathew
Stracy
,
Weston B.
Struwe
,
Andrew J.
Baldwin
,
James
Naismith
,
Benjamin G.
Davis
,
Quentin J.
Sattentau
Open Access
Abstract: Many archetypal and emerging classes of small-molecule therapeutics form covalent protein adducts. In vivo, both the resulting conjugates and their off-target side-conjugates have the potential to elicit antibodies, with implications for allergy and drug sequestration. Although β-lactam antibiotics are a drug class long associated with these immunological phenomena, the molecular underpinnings of off-target drug-protein conjugation and consequent drug-specific immune responses remain incomplete. Here, using the classical β-lactam penicillin G (PenG), we probe the B and T cell determinants of drug-specific IgG responses to such conjugates in mice. Deep B cell clonotyping reveals a dominant murine clonal antibody class encompassing phylogenetically-related IGHV1, IGHV5 and IGHV10 subgroup gene segments. Protein NMR and x-ray structural analyses reveal that these drive structurally convergent binding modes in adduct-specific antibody clones. Their common primary recognition mechanisms of the penicillin side-chain moiety (phenylacetamide in PenG)—regardless of CDRH3 length—limits cross-reactivity against other β-lactam antibiotics. This immunogenetics-guided discovery of the limited binding solutions available to antibodies against side products of an archetypal covalent inhibitor now suggests future potential strategies for the ‘germline-guided reverse engineering’ of such drugs away from unwanted immune responses.
|
Aug 2024
|
|
B23-Circular Dichroism
|
Cédric
Couturier
,
Quentin
Ronzon
,
Giulia
Lattanzi
,
Iain
Lingard
,
Sebastien
Coyne
,
Veronique
Cazals
,
Nelly
Dubarry
,
Stephane
Yvon
,
Corinne
Leroi-Geissler
,
Obdulia Rabal
Gracia
,
Joanne
Teague
,
Sylvie
Sordello
,
David
Corbett
,
Caroline
Bauch
,
Chantal
Monlong
,
Lloyd
Payne
,
Thomas
Taillier
,
Hazel
Fuchs
,
Mark
Broenstrup
,
Peter H.
Harrison
,
Lucile
Moynie
,
Abirami
Lakshminarayanan
,
Tiberiu-Marius
Gianga
,
Rohanah
Hussain
,
James H.
Naismith
,
Michael
Mourez
,
Eric
Bacqué
,
Fredrik
Björkling
,
Jean-Francois
Sabuco
,
Henrik
Franzyk
Diamond Proposal Number(s):
[26447]
Abstract: Tridecaptins comprise a class of linear cationic lipopeptides with an N-terminal fatty acyl moiety. These 13-mer antimicrobial peptides consist of a combination of d- and l-amino acids, conferring increased proteolytic stability. Intriguingly, they are biosynthesized by non-ribosomal peptide synthetases in the same bacterial species that also produce the cyclic polymyxins displaying similar fatty acid tails. Previously, the des-acyl analog of TriA1 (termed H-TriA1) was found to possess very weak antibacterial activity, albeit it potentiated the effect of several antibiotics. In the present study, two series of des-acyl tridecaptins were explored with the aim of improving the direct antibacterial effect. At the same time, overall physico-chemical properties were modulated by amino acid substitution(s) to diminish the risk of undesired levels of hemolysis and to avoid an impairment of mammalian cell viability, since these properties are typically associated with highly hydrophobic cationic peptides. Microbiology and biophysics tools were used to determine bacterial uptake, while circular dichroism and isothermal calorimetry were used to probe the mode of action. Several analogs had improved antibacterial activity (as compared to that of H-TriA1) against Enterobacteriaceae. Optimization enabled identification of the lead compound 29 that showed a good ADMET profile as well as in vivo efficacy in a variety of mouse models of infection.
|
Feb 2024
|
|
I03-Macromolecular Crystallography
Krios II-Titan Krios II at Diamond
Krios IV-Titan Krios IV at Diamond
|
Halina
Mikolajek
,
Miriam
Weckener
,
Z. Faidon
Brotzakis
,
Jiandong
Huo
,
Evmorfia V.
Dalietou
,
Audrey
Le Bas
,
Pietro
Sormanni
,
Peter J.
Harrison
,
Philip N.
Ward
,
Steven
Truong
,
Lucile
Moynie
,
Daniel K.
Clare
,
Maud
Dumoux
,
Joshua
Dormon
,
Chelsea
Norman
,
Naveed
Hussain
,
Vinod
Vogirala
,
Raymond J.
Owens
,
Michele
Vendruscolo
,
James
Naismith
Diamond Proposal Number(s):
[27031, 27051, 29666]
Open Access
Abstract: Camelid single-domain antibodies, also known as nanobodies, can be readily isolated from naïve libraries for specific targets but often bind too weakly to their targets to be immediately useful. Laboratory-based genetic engineering methods to enhance their affinity, termed maturation, can deliver useful reagents for different areas of biology and potentially medicine. Using the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and a naïve library, we generated closely related nanobodies with micromolar to nanomolar binding affinities. By analyzing the structure–activity relationship using X-ray crystallography, cryoelectron microscopy, and biophysical methods, we observed that higher conformational entropy losses in the formation of the spike protein–nanobody complex are associated with tighter binding. To investigate this, we generated structural ensembles of the different complexes from electron microscopy maps and correlated the conformational fluctuations with binding affinity. This insight guided the engineering of a nanobody with improved affinity for the spike protein.
|
Jul 2022
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Lucile
Moynie
,
Françoise
Hoegy
,
Stefan
Milenkovic
,
Mathilde
Munier
,
Aurélie
Paulen
,
Véronique
Gasser
,
Aline L.
Faucon
,
Nicolas
Zill
,
James H.
Naismith
,
Matteo
Ceccarelli
,
Isabelle J.
Schalk
,
Gaëtan L. A.
Mislin
Diamond Proposal Number(s):
[19946, 19281]
Abstract: Enterobactin (ENT) is a tris-catechol siderophore used to acquire iron by multiple bacterial species. These ENT-dependent iron uptake systems have often been considered as potential gates in the bacterial envelope through which one can shuttle antibiotics (Trojan horse strategy). In practice, siderophore analogues containing catechol moieties have shown promise as vectors to which antibiotics may be attached. Bis- and tris-catechol vectors (BCVs and TCVs, respectively) were shown using structural biology and molecular modeling to mimic ENT binding to the outer membrane transporter PfeA in Pseudomonas aeruginosa. TCV but not BCV appears to cross the outer membrane via PfeA when linked to an antibiotic (linezolid). TCV is therefore a promising vector for Trojan horse strategies against P. aeruginosa, confirming the ENT-dependent iron uptake system as a gate to transport antibiotics into P. aeruginosa cells.
|
Jul 2022
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Jiandong
Huo
,
Halina
Mikolajek
,
Audrey
Le Bas
,
Jordan J.
Clark
,
Parul
Sharma
,
Anja
Kipar
,
Joshua
Dormon
,
Chelsea
Norman
,
Miriam
Weckener
,
Daniel K.
Clare
,
Peter J.
Harrison
,
Julia A.
Tree
,
Karen R.
Buttigieg
,
Francisco J.
Salguero
,
Robert
Watson
,
Daniel
Knott
,
Oliver
Carnell
,
Didier
Ngabo
,
Michael J.
Elmore
,
Susan
Fotheringham
,
Adam
Harding
,
Lucile
Moynie
,
Philip N.
Ward
,
Maud
Dumoux
,
Tessa
Prince
,
Yper
Hall
,
Julian A.
Hiscox
,
Andrew
Owen
,
William
James
,
Miles W.
Carroll
,
James P.
Stewart
,
James
Naismith
,
Raymond
Owens
Diamond Proposal Number(s):
[27031]
Open Access
Abstract: SARS-CoV-2 remains a global threat to human health particularly as escape mutants emerge. There is an unmet need for effective treatments against COVID-19 for which neutralizing single domain antibodies (nanobodies) have significant potential. Their small size and stability mean that nanobodies are compatible with respiratory administration. We report four nanobodies (C5, H3, C1, F2) engineered as homotrimers with pmolar affinity for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Crystal structures show C5 and H3 overlap the ACE2 epitope, whilst C1 and F2 bind to a different epitope. Cryo Electron Microscopy shows C5 binding results in an all down arrangement of the Spike protein. C1, H3 and C5 all neutralize the Victoria strain, and the highly transmissible Alpha (B.1.1.7 first identified in Kent, UK) strain and C1 also neutralizes the Beta (B.1.35, first identified in South Africa). Administration of C5-trimer via the respiratory route showed potent therapeutic efficacy in the Syrian hamster model of COVID-19 and separately, effective prophylaxis. The molecule was similarly potent by intraperitoneal injection.
|
Sep 2021
|
|
I03-Macromolecular Crystallography
Krios I-Titan Krios I at Diamond
|
Jiangdong
Huo
,
Audrey
Le Bas
,
Reinis R.
Ruza
,
Helen M. E.
Duyvesteyn
,
Halina
Mikolajek
,
Tomas
Malinauskas
,
Tiong Kit
Tan
,
Pramila
Rijal
,
Maud
Dumoux
,
Philip N.
Ward
,
Jingshan
Ren
,
Daming
Zhou
,
Peter J.
Harrison
,
Miriam
Weckener
,
Daniel K.
Clare
,
Vinod K.
Vogirala
,
Julika
Radecke
,
Lucile
Moynie
,
Yuguang
Zhao
,
Javier
Gilbert-Jaramillo
,
Michael L.
Knight
,
Julia A.
Tree
,
Karen R.
Buttigieg
,
Naomi
Coombes
,
Michael J.
Elmore
,
Miles W.
Carroll
,
Loic
Carrique
,
Pranav N. M.
Shah
,
William
James
,
Alain R.
Townsend
,
David I.
Stuart
,
Raymond J.
Owens
,
James H.
Naismith
Diamond Proposal Number(s):
[27031, 27051]
Open Access
Abstract: The SARS-CoV-2 virus is more transmissible than previous coronaviruses and causes a more serious illness than influenza. The SARS-CoV-2 receptor binding domain (RBD) of the spike protein binds to the human angiotensin-converting enzyme 2 (ACE2) receptor as a prelude to viral entry into the cell. Using a naive llama single-domain antibody library and PCR-based maturation, we have produced two closely related nanobodies, H11-D4 and H11-H4, that bind RBD (KD of 39 and 12 nM, respectively) and block its interaction with ACE2. Single-particle cryo-EM revealed that both nanobodies bind to all three RBDs in the spike trimer. Crystal structures of each nanobody–RBD complex revealed how both nanobodies recognize the same epitope, which partly overlaps with the ACE2 binding surface, explaining the blocking of the RBD–ACE2 interaction. Nanobody-Fc fusions showed neutralizing activity against SARS-CoV-2 (4–6 nM for H11-H4, 18 nM for H11-D4) and additive neutralization with the SARS-CoV-1/2 antibody CR3022.
|
Jul 2020
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Lucile
Moynie
,
Stefan
Milenkovic
,
Gaëtan L. A.
Mislin
,
Véronique
Gasser
,
Giuliano
Malloci
,
Etienne
Baco
,
Rory P.
Mccaughan
,
Malcolm G. P.
Page
,
Isabelle J.
Schalk
,
Matteo
Ceccarelli
,
James H.
Naismith
Open Access
Abstract: Bacteria use small molecules called siderophores to scavenge iron. Siderophore-Fe3+ complexes are recognised by outer-membrane transporters and imported into the periplasm in a process dependent on the inner-membrane protein TonB. The siderophore enterobactin is secreted by members of the family Enterobacteriaceae, but many other bacteria including Pseudomonas species can use it. Here, we show that the Pseudomonas transporter PfeA recognises enterobactin using extracellular loops distant from the pore. The relevance of this site is supported by in vivo and in vitro analyses. We suggest there is a second binding site deeper inside the structure and propose that correlated changes in hydrogen bonds link binding-induced structural re-arrangements to the structural adjustment of the periplasmic TonB-binding motif.
|
Aug 2019
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Open Access
Abstract: New strategies are urgently required to develop antibiotics. The siderophore uptake system has attracted considerable attention but rational design of siderophore antibiotic conjugates requires knowledge of recognition by the cognate outer membrane transporter. Acinetobacter baumannii is a serious pathogen, which utilizes (pre)acinetobactin to scavenge iron from the host. We report the structure of the (pre)acinetobactin transporter BauA bound to the siderophore, identifying the structural determinants of recognition. Detailed biophysical analysis confirms that BauA recognises preacinetobactin. We show that acinetobactin is not recognised by the protein thus preacinetobactin is essential for iron uptake. The structure shows and NMR confirms that under physiological conditions a molecule of acinetobactin will bind to two free coordination sites on the iron preacinetobactin complex. The ability to recognise a heterotrimeric iron preacinetobactin acinetobactin complex may rationalize contradictory reports in the literature. These results open new avenues for the design of novel antibiotic conjugates (trojan horse) antibiotics.
|
Dec 2018
|
|
I24-Microfocus Macromolecular Crystallography
|
Abstract: Enterobactin (ENT) is a siderophore (iron-chelating compound) produced by Escherichia coli in order to gain access to iron, an essential nutriment for bacterial growth. ENT is used as an exosiderophore by the opportunistic human pathogen Pseudomonas aeruginosa with transport of ferri-ENT across the bacterial outer membrane by the transporter PfeA. Next to pfeA gene on the chromosome is localized a gene encoding for an esterase, PfeE, whose transcription is regulated, as for pfeA, by the presence of ENT in bacterial environment. Purified PfeE hydrolyzed ferri-ENT into three molecules of 2,3 DHBS (2,3 dihydroxybenzoylserine) still complexed with ferric iron, and complete dissociation of iron from ENT chelating groups was only possible in the presence of both PfeE and an iron reducer, such as DTT. The crystal structure of PfeE and an inactive PfeE mutant complexed with ferri-ENT or a non-hydrolysable ferri-catechol complex allowed identification of the enzyme binding site and the catalytic triad. Finally, cell fractionation and fluorescence microscopy showed periplasmic localization of PfeE in P. aeruginosa cells. Thus, the molecular mechanism of iron release from ENT in P. aeruginosa differs from that previously described in E. coli. In P. aeruginosa, siderophore hydrolysis occurs in the periplasm, with ENT never reaching the bacterial cytoplasm. In E. coli, ferri-ENT crosses the inner membrane via the ABC transporter FepBCD and ferri-ENT is hydrolyzed by the esterase Fes only once it is in the cytoplasm.
|
Aug 2018
|
|