I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Diamond Proposal Number(s):
[21725]
Open Access
Abstract: Cuprate superconductors have the highest critical temperatures (Tc) at ambient pressure, yet a consensus on the superconducting mechanism remains to be established. Finding an empirical parameter that limits the highest reachable Tc can provide crucial insight into this outstanding problem. Here, in the first two Ruddlesden-Popper members of the model Hg-family of cuprates, which are chemically nearly identical and have the highest Tc among all cuprate families, we use inelastic photon scattering to reveal that the energy of magnetic fluctuations may play such a role. In particular, we observe the single-paramagnon spectra to be nearly identical between the two compounds, apart from an energy scale difference of ~30% which matches their difference in Tc. The empirical correlation between paramagnon energy and maximal Tc is further found to extend to other cuprate families with relatively high Tc’s, hinting at a fundamental connection between them.
|
Jun 2022
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Nimrod
Bachar
,
Kacper
Koteras
,
Jakub
Gawraczynski
,
Waldemar
Trzciński
,
Józef
Paszula
,
Riccardo
Piombo
,
Paolo
Barone
,
Zoran
Mazej
,
Giacomo
Ghiringhelli
,
Abhishek
Nag
,
Ke-Jin
Zhou
,
José
Lorenzana
,
Dirk
Van Der Marel
,
Wojciech
Grochala
Diamond Proposal Number(s):
[24869]
Open Access
Abstract: Charge-transfer insulators are the parent phase of a large group of today's unconventional high-temperature superconductors. Here we study experimentally and theoretically the interband excitations of the charge-transfer insulator silver fluoride
AgF
2
, which has been proposed as an excellent analog of oxocuprates. Optical conductivity and resonant inelastic x-ray scattering on
AgF
2
polycrystalline sample show a close similarity with that measured on undoped
La
2
CuO
4
. While the former shows a charge-transfer gap
∼
3.4
eV, larger than in the cuprate,
d
d
excitations are nearly at the same energy in the two materials. Density functional theory and exact diagonalization cluster computations of the multiplet spectra show that
AgF
2
is more covalent than the cuprate, in spite of the larger fundamental gap. Furthermore, we show that
AgF
2
is at the verge of a charge-transfer instability. The overall resemblance of our data on
AgF
2
to those published previously on
La
2
CuO
4
suggests that the underlying charge-transfer insulator physics is the same, while
AgF
2
could also benefit from a proximity to a charge density wave phase as in
BaBiO
3
. Therefore, our work provides a compelling support to the future use of fluoroargentates for materials' engineering of novel high-temperature superconductors.
|
May 2022
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Diamond Proposal Number(s):
[24593]
Open Access
Abstract: The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin S ≥ 1. Unfortunately, since most experimental probes are governed by dipolar selection rules, collective multipolar excitations have generally remained elusive. For instance, only dipolar magnetic excitations have been observed in isotropic S = 1 Haldane spin systems. Here, we unveil a hidden quadrupolar constituent of the spin dynamics in antiferromagnetic S = 1 Haldane chain material Y2BaNiO5 using Ni L3-edge resonant inelastic x-ray scattering. Our results demonstrate that pure quadrupolar magnetic excitations can be probed without direct interactions with dipolar excitations or anisotropic perturbations. Originating from on-site double spin-flip processes, the quadrupolar magnetic excitations in Y2BaNiO5 show a remarkable dual nature of collective dispersion. While one component propagates as non-interacting entities, the other behaves as a bound quadrupolar magnetic wave. This result highlights the rich and largely unexplored physics of higher-order magnetic excitations.
|
Apr 2022
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Yingying
Peng
,
Leonardo
Martinelli
,
Qizhi
Li
,
Matteo
Rossi
,
Matteo
Mitrano
,
Riccardo
Arpaia
,
Marco
Moretti Sala
,
Qiang
Gao
,
Xuefei
Guo
,
Gabriella Maria
De Luca
,
Andrew
Walters
,
Abhishek
Nag
,
Andi
Barbour
,
Genda
Gu
,
Jonathan
Pelliciari
,
Nicholas B.
Brookes
,
Peter
Abbamonte
,
Marco
Salluzzo
,
Xingjiang
Zhou
,
Ke-Jin
Zhou
,
Valentina
Bisogni
,
Lucio
Braicovich
,
Steven
Johnston
,
Giacomo
Ghiringhelli
Diamond Proposal Number(s):
[20012]
Abstract: While electron-phonon coupling (EPC) is crucial for Cooper pairing in conventional superconductors, its role in high-
T
c
superconducting cuprates is debated. Using resonant inelastic x-ray scattering at the oxygen
K
edge, we study the EPC in
Bi
2
Sr
2
Ca
Cu
2
O
8
+
δ
(Bi2212) and
Nd
1
+
x
Ba
2
−
x
Cu
3
O
7
−
δ
(NBCO) at different doping levels ranging from heavily underdoped (
p
=
0.07
) to overdoped (
p
=
0.21
). We analyze the data with a localized Lang-Firsov model that allows for the coherent excitations of two phonon modes. While electronic band dispersion effects are non-negligible, we are able to perform a study of the relative values of EPC matrix elements in these cuprate families. In the case of NBCO, the choice of the excitation energy allows us to disentangle modes related to the CuO chains and the
Cu
O
2
planes. Combining the results from the two families, we find the EPC strength decreases with doping at
q
∥
=
(
−
0.25
,
0
)
r.l.u., but has a nonmonotonic trend as a function of doping at smaller momenta. This behavior is attributed to the screening effect of charge carriers. We also find that the phonon intensity is enhanced in the vicinity of the charge-density-wave excitations while the extracted EPC strength appears to be less sensitive to their proximity. By performing a comparative study of two cuprate families, we are able to identify general trends in the EPC for the cuprates and provide experimental input to theories invoking a synergistic role for this interaction in
d
-wave pairing.
|
Mar 2022
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Ke-Jin
Zhou
,
Andrew
Walters
,
Mirian
Garcia-Fernandez
,
Thomas
Rice
,
Matthew
Hand
,
Abhishek
Nag
,
Jiemin
Li
,
Stefano
Agrestini
,
Peter
Garland
,
Hongchang
Wang
,
Simon
Alcock
,
Ioana
Nistea
,
Brian
Nutter
,
Nicholas
Rubies
,
Giles
Knap
,
Martin
Gaughran
,
Fajin
Yuan
,
Peter
Chang
,
John
Emmins
,
George
Howell
Open Access
Abstract: The I21 beamline at Diamond Light Source is dedicated to advanced resonant inelastic X-ray scattering (RIXS) for probing charge, orbital, spin and lattice excitations in materials across condensed matter physics, applied sciences and chemistry. Both the beamline and the RIXS spectrometer employ divergent variable-line-spacing gratings covering a broad energy range of 280–3000 eV. A combined energy resolution of ∼35 meV (16 meV) is readily achieved at 930 eV (530 eV) owing to the optimized optics and the mechanics. Considerable efforts have been paid to the design of the entire beamline, particularly the implementation of the collection mirrors, to maximize the X-ray photon throughput. The continuous rotation of the spectrometer over 150° under ultra high vacuum and a cryogenic manipulator with six degrees of freedom allow accurate mappings of low-energy excitations from solid state materials in momentum space. Most importantly, the facility features a unique combination of the high energy resolution and the high photon throughput vital for advanced RIXS applications. Together with its stability and user friendliness, I21 has become one of the most sought after RIXS beamlines in the world.
|
Mar 2022
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
M.
Rossi
,
H.
Lu
,
A.
Nag
,
D.
Li
,
M.
Osada
,
K.
Lee
,
B. Y.
Wang
,
S.
Agrestini
,
Mirian
Garcia-Fernandez
,
J. J.
Kas
,
Y.-D.
Chuang
,
Z. X.
Shen
,
H. Y.
Hwang
,
B.
Moritz
,
Ke-Jin
Zhou
,
T. P.
Devereaux
,
W. S.
Lee
Diamond Proposal Number(s):
[25165]
Abstract: The recent discovery of superconductivity in Nd1−xSrxNiO2 has drawn significant attention in the field. A key open question regards the evolution of the electronic structure with respect to hole doping. Here we exploit x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) to probe the doping-dependent electronic structure of Nd1−xSrxNiO. Upon doping, a high-energy feature in Ni L3-edge XAS develops in addition to the main absorption peak, while XAS at the O K-, Nd M3- and Nd M5-edge exhibits a much weaker response. This implies that doped holes are mainly introduced into Ni 3 d states. By comparing our data to atomic multiplet calculations including D4h crystal field, the doping-induced feature in Ni L3-edge XAS is consistent with a d 8 spin-singlet state in which doped holes reside in the 3dx2−y2 orbitals. This is further supported by the softening of RIXS orbital excitations due to doping, corroborating with the Fermi level shift associated with increasing holes in the Ni 3dx2−y2 orbital.
|
Dec 2021
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
C. D.
Dashwood
,
A.
Geondzhian
,
J. G.
Vale
,
A. C.
Pakpour-Tabrizi
,
C. A.
Howard
,
Q.
Faure
,
L. S. I.
Veiga
,
D.
Meyers
,
G. S.
Chiuzbaian
,
A.
Nicolaou
,
N.
Jaouen
,
R. B.
Jackman
,
A.
Nag
,
M.
Garcia-Fernandez
,
Ke-Jin
Zhou
,
A. C.
Walters
,
K.
Gilmore
,
D. F.
Mcmorrow
,
M. P. M.
Dean
Diamond Proposal Number(s):
[22695]
Open Access
Abstract: Interactions between electrons and lattice vibrations are responsible for a wide range of material properties and applications. Recently, there has been considerable interest in the development of resonant inelastic x-ray scattering (RIXS) as a tool for measuring electron-phonon (
e
-ph) interactions. Here, we demonstrate the ability of RIXS to probe the interaction between phonons and specific electronic states both near to, and away from, the Fermi level. We perform carbon
K
-edge RIXS measurements on graphite, tuning the incident x-ray energy to separately probe the interactions of the
π
∗
and
σ
∗
electronic states. Our high-resolution data reveal detailed structure in the multiphonon RIXS features that directly encodes the momentum dependence of the
e
-ph interaction strength. We develop a Green’s-function method to model this structure, which naturally accounts for the phonon and interaction-strength dispersions, as well as the mixing of phonon momenta in the intermediate state. This model shows that the differences between the spectra can be fully explained by contrasting trends of the
e
-ph interaction through the Brillouin zone, being concentrated at the
Γ
and
K
points for the
π
∗
states while being significant at all momenta for the
σ
∗
states. Our results advance the interpretation of phonon excitations in RIXS and extend its applicability as a probe of
e
-ph interactions to a new range of out-of-equilibrium situations.
|
Dec 2021
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Suhan
Son
,
Youjin
Lee
,
Jae Ha
Kim
,
Beom Hyun
Kim
,
Chaebin
Kim
,
Woongki
Na
,
Hwiin
Ju
,
Sudong
Park
,
Abhishek
Nag
,
Ke-Jin
Zhou
,
Young-Woo
Son
,
Hyeongdo
Kim
,
Woo-Suk
Noh
,
Jae-Hoon
Park
,
Jong Seok
Lee
,
Hyeonsik
Cheong
,
Jae Hoon
Kim
,
Je-Geun
Park
Diamond Proposal Number(s):
[29554]
Abstract: Matter-light interaction is at the center of diverse research fields from quantum optics to condensed matter physics, opening new fields like laser physics. A magnetic exciton is one such rare example found in magnetic insulators. However, it is relatively rare to observe that external variables control matter-light interaction. Here, we report that the broken inversion symmetry of multiferroicity can act as an external knob enabling the magnetic exciton in van der Waals antiferromagnet NiI2. We further discover that this magnetic exciton arises from a transition between Zhang-Rice-triplet and Zhang-Rice-singlet's fundamentally quantum entangled states. This quantum entanglement produces an ultra-sharp optical exciton peak at 1.384 eV with a 5 meV linewidth. Our work demonstrates that NiI2 is two-dimensional magnetically ordered with an intrinsically quantum entangled ground state.
|
Dec 2021
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Diamond Proposal Number(s):
[25589]
Open Access
Abstract: Oxidation and reduction of the oxide ions in the bulk of cathode materials is a potential route towards increasing the energy density of Li-ion batteries. Here, we present neutron PDF data which demonstrates the presence of short 1.2 Å O–O distances in a charged O-redox cathode material, corresponding to the bond length of molecular O2. This was achieved by collecting our data close to absolute zero (2 K), suppressing thermal motion which may have obscured detection by PDF previously. This direct detection of molecular O2 trapped in the material by diffraction complements the X-ray spectroscopy studies by e.g. RIXS while avoiding issues of possible beam damage as well as being a bulk average technique.
|
Dec 2021
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
H.
Lu
,
M.
Rossi
,
A.
Nag
,
M.
Osada
,
D. F.
Li
,
K.
Lee
,
B. Y.
Wang
,
M.
Garcia-Fernandez
,
S.
Agrestini
,
Z. X.
Shen
,
E. M.
Been
,
B.
Moritz
,
T. P.
Devereaux
,
J.
Zaanen
,
H. Y.
Hwang
,
K.-J.
Zhou
,
W.-S.
Lee
Diamond Proposal Number(s):
[25165]
Abstract: The discovery of superconductivity in infinite-layer nickelates brings us tantalizingly close to a material class that mirrors the cuprate superconductors. We measured the magnetic excitations in these nickelates using resonant inelastic x-ray scattering at the Ni L3-edge. Undoped NdNiO2 possesses a branch of dispersive excitations with a bandwidth of approximately 200 milli–electron volts, which is reminiscent of the spin wave of strongly coupled, antiferromagnetically aligned spins on a square lattice. The substantial damping of these modes indicates the importance of coupling to rare-earth itinerant electrons. Upon doping, the spectral weight and energy decrease slightly, whereas the modes become overdamped. Our results highlight the role of Mottness in infinite-layer nickelates.
|
Jul 2021
|
|