I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Jurgen
Brem
,
Tharindi
Panduwawala
,
Jon Ulf
Hansen
,
Joanne
Hewitt
,
Edgars
Liepins
,
Pawel
Donets
,
Laura
Espina
,
Alistair J. M.
Farley
,
Kirill
Shubin
,
Gonzalo Gomez
Campillos
,
Paula
Kiuru
,
Shifali
Shishodia
,
Daniel
Krahn
,
Robert K.
Leśniak
,
Juliane
Schmidt
,
Karina
Calvopina
,
María-Carmen
Turrientes
,
Madeline E.
Kavanagh
,
Dmitrijs
Lubriks
,
Philip
Hinchliffe
,
Gareth W.
Langley
,
Ali F.
Aboklaish
,
Anders
Eneroth
,
Maria
Backlund
,
Andrei G.
Baran
,
Elisabet I.
Nielsen
,
Michael
Speake
,
Janis
Kuka
,
John
Robinson
,
Solveiga
Grinberga
,
Lindsay
Robinson
,
Michael A.
Mcdonough
,
Anna M.
Rydzik
,
Thomas M.
Leissing
,
Juan Carlos
Jimenez-Castellanos
,
Matthew B.
Avison
,
Solange
Da Silva Pinto
,
Andrew D.
Pannifer
,
Marina
Martjuga
,
Emma
Widlake
,
Martins
Priede
,
Iva
Hopkins Navratilova
,
Marek
Gniadkowski
,
Anna Karin
Belfrage
,
Peter
Brandt
,
Jari
Yli-Kauhaluoma
,
Eric
Bacque
,
Malcolm G. P.
Page
,
Fredrik
Björkling
,
Jonathan M.
Tyrrell
,
James
Spencer
,
Pauline A.
Lang
,
Pawel
Baranczewski
,
Rafael
Cantón
,
Stuart P.
Mcelroy
,
Philip S.
Jones
,
Fernando
Baquero
,
Edgars
Suna
,
Angus
Morrison
,
Timothy R.
Walsh
,
Christopher J.
Schofield
Open Access
Abstract: Carbapenems are vital antibiotics, but their efficacy is increasingly compromised by metallo-β-lactamases (MBLs). Here we report the discovery and optimization of potent broad-spectrum MBL inhibitors. A high-throughput screen for NDM-1 inhibitors identified indole-2-carboxylates (InCs) as potential β-lactamase stable β-lactam mimics. Subsequent structure–activity relationship studies revealed InCs as a new class of potent MBL inhibitor, active against all MBL classes of major clinical relevance. Crystallographic studies revealed a binding mode of the InCs to MBLs that, in some regards, mimics that predicted for intact carbapenems, including with respect to maintenance of the Zn(II)-bound hydroxyl, and in other regards mimics binding observed in MBL–carbapenem product complexes. InCs restore carbapenem activity against multiple drug-resistant Gram-negative bacteria and have a low frequency of resistance. InCs also have a good in vivo safety profile, and when combined with meropenem show a strong in vivo efficacy in peritonitis and thigh mouse infection models.
|
Dec 2021
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[17212]
Abstract: Widespread bacterial resistance to carbapenem antibiotics is an increasing global health concern. Resistance has emerged due to carbapenem-hydrolyzing enzymes, including metallo-β-lactamases (MβLs), but despite their prevalence and clinical importance, MβL mechanisms are still not fully understood. Carbapenem hydrolysis by MβLs can yield alternative product tautomers with the potential to access different binding modes. Here, we show that a combined approach employing crystallography and quantum mechanics/molecular mechanics (QM/MM) simulations allow tautomer assignment in MβL:hydrolyzed antibiotic complexes. Molecular simulations also examine (meta)stable species of alternative protonation and tautomeric states, providing mechanistic insights into β-lactam hydrolysis. We report the crystal structure of the hydrolyzed carbapenem ertapenem bound to the L1 MβL from Stenotrophomonas maltophilia and model alternative tautomeric and protonation states of both hydrolyzed ertapenem and faropenem (a related penem antibiotic), which display different binding modes with L1. We show how the structures of both complexed β-lactams are best described as the (2S)-imine tautomer with the carboxylate formed after β-lactam ring cleavage deprotonated. Simulations show that enamine tautomer complexes are significantly less stable (e.g., showing partial loss of interactions with the L1 binuclear zinc center) and not consistent with experimental data. Strong interactions of Tyr32 and one zinc ion (Zn1) with ertapenem prevent a C6 group rotation, explaining the different binding modes of the two β-lactams. Our findings establish the relative stability of different hydrolyzed (carba)penem forms in the L1 active site and identify interactions important to stable complex formation, information that should assist inhibitor design for this important antibiotic resistance determinant.
|
Oct 2021
|
|
NONE-No attached Diamond beamline
|
H. T. Henry
Chan
,
Marc A.
Moesser
,
Rebecca K.
Walters
,
Tika R.
Malla
,
Rebecca M.
Twidale
,
Tobias
John
,
Helen M.
Deeks
,
Tristan
Johnston-Wood
,
Victor
Mikhailov
,
Richard B.
Sessions
,
William
Dawson
,
Eidarus
Salah
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
C. David
Owen
,
Takahito
Nakajima
,
Katarzyna
Świderek
,
Alessio
Lodola
,
Vicent
Moliner
,
David R.
Glowacki
,
James
Spencer
,
Martin A.
Walsh
,
Christopher J.
Schofield
,
Luigi
Genovese
,
Deborah K.
Shoemark
,
Adrian J.
Mulholland
,
Fernanda
Duarte
,
Garrett M.
Morris
Open Access
Abstract: The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of biomolecular simulation techniques, including automated docking, molecular dynamics (MD) and interactive MD in virtual reality, QM/MM, and linear-scaling DFT, to investigate the molecular features underlying recognition of the natural Mpro substrates. We extensively analysed the subsite interactions of modelled 11-residue cleavage site peptides, crystallographic ligands, and docked COVID Moonshot-designed covalent inhibitors. Our modelling studies reveal remarkable consistency in the hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular plasticity at the S2 site. Building on our initial Mpro-substrate models, we used predictive saturation variation scanning (PreSaVS) to design peptides with improved affinity. Non-denaturing mass spectrometry and other biophysical analyses confirm these new and effective ‘peptibitors’ inhibit Mpro competitively. Our combined results provide new insights and highlight opportunities for the development of Mpro inhibitors as anti-COVID-19 drugs.
|
Oct 2021
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Philip
Hinchliffe
,
Diego M.
Moreno
,
Maria-Agustina
Rossi
,
Maria F.
Mojica
,
Veronica
Martinez
,
Valentina
Villamil
,
Brad
Spellberg
,
George L.
Drusano
,
Claudia
Banchio
,
Graciela
Mahler
,
Robert A.
Bonomo
,
Alejandro J.
Vila
,
James
Spencer
Diamond Proposal Number(s):
[12342, 17212]
Abstract: Metallo-β-lactamase (MBL) production in Gram-negative bacteria is an important contributor to β-lactam antibiotic resistance. Combining β-lactams with β-lactamase inhibitors (BLIs) is a validated route to overcoming resistance, but MBL inhibitors are not available in the clinic. On the basis of zinc utilization and sequence, MBLs are divided into three subclasses, B1, B2, and B3, whose differing active-site architectures hinder development of BLIs capable of “cross-class” MBL inhibition. We previously described 2-mercaptomethyl thiazolidines (MMTZs) as B1 MBL inhibitors (e.g., NDM-1) and here show that inhibition extends to the clinically relevant B2 (Sfh-I) and B3 (L1) enzymes. MMTZs inhibit purified MBLs in vitro (e.g., Sfh-I, Ki 0.16 μM) and potentiate β-lactam activity against producer strains. X-ray crystallography reveals that inhibition involves direct interaction of the MMTZ thiol with the mono- or dizinc centers of Sfh-I/L1, respectively. This is further enhanced by sulfur-π interactions with a conserved active site tryptophan. Computational studies reveal that the stereochemistry at chiral centers is critical, showing less potent MMTZ stereoisomers (up to 800-fold) as unable to replicate sulfur-π interactions in Sfh-I, largely through steric constraints in a compact active site. Furthermore, in silico replacement of the thiazolidine sulfur with oxygen (forming an oxazolidine) resulted in less favorable aromatic interactions with B2 MBLs, though the effect is less than that previously observed for the subclass B1 enzyme NDM-1. In the B3 enzyme L1, these effects are offset by additional MMTZ interactions with the protein main chain. MMTZs can therefore inhibit all MBL classes by maintaining conserved binding modes through different routes.
|
Aug 2021
|
|
I24-Microfocus Macromolecular Crystallography
|
Agata
Butryn
,
Philipp S.
Simon
,
Pierre
Aller
,
Philip
Hinchliffe
,
Ramzi N.
Massad
,
Gabriel
Leen
,
Catherine L.
Tooke
,
Isabel
Bogacz
,
In-Sik
Kim
,
Asmit
Bhowmick
,
Aaron S.
Brewster
,
Nicholas E.
Devenish
,
Jurgen
Brem
,
Jos J. A. G.
Kamps
,
Pauline A.
Lang
,
Patrick
Rabe
,
Danny
Axford
,
John H.
Beale
,
Bradley
Davy
,
Ali
Ebrahim
,
Julien
Orlans
,
Selina L. S.
Storm
,
Tiankun
Zhou
,
Shigeki
Owada
,
Rie
Tanaka
,
Kensuke
Tono
,
Gwyndaf
Evans
,
Robin L.
Owen
,
Frances A.
Houle
,
Nicholas K.
Sauter
,
Christopher J.
Schofield
,
James
Spencer
,
Vittal K.
Yachandra
,
Junko
Yano
,
Jan F.
Kern
,
Allen M.
Orville
Diamond Proposal Number(s):
[19458, 25260]
Open Access
Abstract: Serial femtosecond crystallography has opened up many new opportunities in structural biology. In recent years, several approaches employing light-inducible systems have emerged to enable time-resolved experiments that reveal protein dynamics at high atomic and temporal resolutions. However, very few enzymes are light-dependent, whereas macromolecules requiring ligand diffusion into an active site are ubiquitous. In this work we present a drop-on-drop sample delivery system that enables the study of enzyme-catalyzed reactions in microcrystal slurries. The system delivers ligand solutions in bursts of multiple picoliter-sized drops on top of a larger crystal-containing drop inducing turbulent mixing and transports the mixture to the X-ray interaction region with temporal resolution. We demonstrate mixing using fluorescent dyes, numerical simulations and time-resolved serial femtosecond crystallography, which show rapid ligand diffusion through microdroplets. The drop-on-drop method has the potential to be widely applicable to serial crystallography studies, particularly of enzyme reactions with small molecule substrates.
|
Jul 2021
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Anka
Lucic
,
Philip
Hinchliffe
,
Tika R.
Malla
,
Catherine L.
Tooke
,
Jurgen
Brem
,
Karina
Calvopina
,
Christopher T.
Lohans
,
Patrick
Rabe
,
Michael A.
Mcdonough
,
Timothy
Armistead
,
Allen M.
Orville
,
James
Spencer
,
Christopher J.
Schofield
Diamond Proposal Number(s):
[17212, 23269, 18069]
Abstract: Penems have demonstrated potential as antibacterials and β-lactamase inhibitors; however, their clinical use has been limited, especially in comparison with the structurally related carbapenems. Faropenem is an orally active antibiotic with a C2 tetrahydrofuran (THF) ring, which is resistant to hydrolysis by some β-lactamases. We report studies on the reactions of faropenem with carbapenem-hydrolysing β-lactamases, focusing on the class A serine β-lactamase KPC-2 and the metallo β-lactamases (MBLs) VIM-2 (a subclass B1 MBL) and L1 (a B3 MBL). Kinetic studies show that faropenem is a substrate for all three β-lactamases, though it is less efficiently hydrolysed by KPC-2. Crystallographic analyses on faropenem-derived complexes reveal the opening of the β-lactam ring with formation of an imine with KPC-2, VIM-2, and L1. In the cases of the KPC-2 and VIM-2 structures, the THF ring is opened to give an alkene, but with L1 the THF ring remains intact. Solution state studies, employing NMR, were performed on L1, KPC-2, VIM-2, VIM-1, NDM-1, OXA-23, OXA-10, and OXA-48. The solution results reveal, in all cases, formation of imine products in which the THF ring is opened; formation of a THF ring-closed imine product was only observed with VIM-1 and VIM-2. An enamine product with a closed THF ring was also observed in all cases, at varying levels. Combined with previous reports, the results exemplify the potential for different outcomes in the reactions of penems with MBLs and SBLs and imply further structure-activity relationship studies are worthwhile to optimise the interactions of penems with β-lactamases. They also exemplify how crystal structures of β-lactamase substrate/inhibitor complexes do not always reflect reaction outcomes in solution.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Maria-Agustina
Rossi
,
Veronica
Martinez
,
Philip
Hinchliffe
,
Maria F.
Mojica
,
Valerie
Castillo
,
Diego M.
Moreno
,
Ryan
Smith
,
Brad
Spellberg
,
George L.
Drusano
,
Claudia
Banchio
,
Robert A.
Bonomo
,
James
Spencer
,
Alejandro J.
Vila
,
Graciela
Mahler
Diamond Proposal Number(s):
[17212]
Open Access
Abstract: Infections caused by multidrug resistant (MDR) bacteria are a major public health threat. Carbapenems are among the most potent antimicrobial agents that are commercially available to treat MDR bacteria. Bacterial production of carbapenem-hydrolysing metallo-β-lactamases (MBLs) challenges their safety and efficacy, with subclass B1 MBLs hydrolysing almost all β-lactam antibiotics. MBL inhibitors would fulfil an urgent clinical need by prolonging the lifetime of these life-saving drugs. Here we report the synthesis and activity of a series of 2-mercaptomethyl-thiazolidines (MMTZs), designed to replicate MBL interactions with reaction intermediates or hydrolysis products. MMTZs are potent competitive inhibitors of B1 MBLs in vitro (e.g., Ki = 0.44 μM vs. NDM-1). Crystal structures of MMTZ complexes reveal similar binding patterns to the most clinically important B1 MBLs (NDM-1, VIM-2 and IMP-1), contrasting with previously studied thiol-based MBL inhibitors, such as bisthiazolidines (BTZs) or captopril stereoisomers, which exhibit lower, more variable potencies and multiple binding modes. MMTZ binding involves thiol coordination to the Zn(II) site and extensive hydrophobic interactions, burying the inhibitor more deeply within the active site than D/L-captopril. Unexpectedly, MMTZ binding features a thioether–π interaction with a conserved active-site aromatic residue, consistent with their equipotent inhibition and similar binding to multiple MBLs. MMTZs penetrate multiple Enterobacterales, inhibit NDM-1 in situ, and restore carbapenem potency against clinical isolates expressing B1 MBLs. Based on their inhibitory profile and lack of eukaryotic cell toxicity, MMTZs represent a promising scaffold for MBL inhibitor development. These results also suggest sulphur–π interactions can be exploited for general ligand design in medicinal chemistry.
|
Jan 2021
|
|
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[172122, 23269]
Open Access
Abstract: Class A serine β-lactamases (SBLs) are key antibiotic resistance determinants in Gram-negative bacteria. SBLs neutralize β-lactams via a hydrolytically labile covalent acyl-enzyme intermediate. Klebsiella pneumoniae carbapenemase (KPC) is a widespread SBL that hydrolyzes carbapenems, the most potent β-lactams; known KPC variants differ in turnover of expanded-spectrum oxyimino-cephalosporins (ESOCs), e.g. cefotaxime and ceftazidime. Here, we compare ESOC hydrolysis by the parent enzyme KPC-2 and its clinically observed double variant (P104R/V240G) KPC-4. Kinetic analyses show KPC-2 hydrolyzes cefotaxime more efficiently than the bulkier ceftazidime, with improved ESOC turnover by KPC-4 resulting from enhanced turnover (kcat), rather than binding (KM). High-resolution crystal structures of ESOC acyl-enzyme complexes with deacylation-deficient (E166Q) KPC-2 and KPC-4 mutants show that ceftazidime acylation causes rearrangement of three loops; the Ω-, 240- and 270-loops, that border the active site. However, these rearrangements are less pronounced in the KPC-4 than the KPC-2 ceftazidime acyl-enzyme, and are not observed in the KPC-2:cefotaxime acyl-enzyme. Molecular dynamics simulations of KPC:ceftazidime acyl-enyzmes reveal that the deacylation general base E166, located on the Ω-loop, adopts two distinct conformations in KPC-2, either pointing ‘in’ or ‘out’ of the active site; with only the ‘in’ form compatible with deacylation. The ‘out’ conformation was not sampled in the KPC-4 acyl-enzyme, indicating that efficient ESOC breakdown is dependent upon the ordering and conformation of the KPC Ω-loop. The results explain how point mutations expand the activity spectrum of the clinically important KPC SBLs to include ESOCs through their effects on the conformational dynamics of the acyl-enzyme intermediate.
|
Nov 2020
|
|
I24-Microfocus Macromolecular Crystallography
|
Emily
Lythell
,
Reynier
Suardíaz
,
Philip
Hinchliffe
,
Chonnikan
Hanpaibool
,
Surawit
Visitsatthawong
,
A. Sofia F.
Oliveira
,
Eric J. M.
Lang
,
Panida
Surawatanawong
,
Vannajan Sanghiran
Lee
,
Thanyada
Rungrotmongkol
,
Natalie
Fey
,
James
Spencer
,
Adrian J.
Mulholland
Diamond Proposal Number(s):
[12342]
Abstract: MCR (mobile colistin resistance) enzymes catalyse phosphoethanolamine (PEA) addition to bacterial lipid A, threatening the “last-resort” antibiotic colistin. Molecular dynamics and density functional theory simulations indicate that monozinc MCR supports PEA transfer to the Thr285 acceptor, positioning MCR as a mono- rather than multinuclear member of the alkaline phosphatase superfamily.
|
May 2020
|
|
I03-Macromolecular Crystallography
|
Pharit
Kamsri
,
Chayanin
Hanwarinroj
,
Naruedon
Phusi
,
Thimpika
Pornprom
,
Kampanart
Chayajarus
,
Auradee
Punkvang
,
Nitima
Suttipanta
,
Potjanee
Srimanote
,
Khomson
Suttisintong
,
Chomphunuch
Songsiriritthigul
,
Patchreenart
Saparpakorn
,
Supa
Hannongbua
,
Siriluk
Rattanabunyong
,
Supaporn
Seetaha
,
Kiattawee
Choowongkomon
,
Sanya
Sureram
,
Prasat
Kittakoop
,
Poonpilas
Hongmanee
,
Pitak
Santanirand
,
Zhaoqiang
Chen
,
Weiliang
Zhu
,
Rosemary A
Blood
,
Yuiko
Takebayashi
,
Philip
Hinchliffe
,
Adrian J.
Mulholland
,
James
Spencer
,
Pornpan
Pungpo
Diamond Proposal Number(s):
[17212]
Abstract: The enoyl-acyl carrier protein reductase InhA of M. tuberculosis is an attractive, validated target for anti-tuberculosis drug development. Moreover, direct inhibitors of InhA remain effective against InhA variants with mutations associated with isoniazid resistance, offering the potential for activity against MDR isolates. Here, structure based virtual screening supported by biological assays was applied to identify novel InhA inhibitors as potential anti-tuberculosis agents. High-speed Glide SP docking was initially performed against two conformations of InhA differing in the orientation of the active site Tyr158. The resulting hits were filtered for drug-likeness based on Lipinski's rule and avoidance of PAINS-like properties, and finally subjected to Glide XP docking to improve accuracy. Sixteen compounds were identified and selected for in vitro biological assays, of which two (compounds 1 and 7) showed MIC of 12.5 and 25 µg/ml against M. tuberculosis H37Rv, respectively. Inhibition assays against purified recombinant InhA determined IC50 values for these compounds of 0.38 and 0.22 µM, respectively. A crystal structure of the most potent compound, compound 7, bound to InhA revealed the inhibitor to occupy a hydrophobic pocket implicated in binding the aliphatic portions of InhA substrates but distant from the NADH cofactor, i.e. in a site distinct from those occupied by the great majority of known InhA inhibitors. This compound provides an attractive starting template for ligand optimization aimed at discovery of new and effective compounds against M. tuberculosis that act by targeting InhA.
|
Dec 2019
|
|