I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Petra
Lukacik
,
C. David
Owen
,
Gemma
Harris
,
Jani Reddy
Bolla
,
Sarah
Picaud
,
Irfan
Alibay
,
Joanne E.
Nettleship
,
Louise E.
Bird
,
Raymond
Owens
,
Philip C.
Biggin
,
Panagis
Filippakopoulos
,
Carol V.
Robinson
,
Martin A.
Walsh
Diamond Proposal Number(s):
[4990, 5073, 4988]
Open Access
Abstract: Nontypeable Haemophilus influenzae (NTHi) is a significant pathogen in respiratory disease and otitis media. Important for NTHi survival, colonization and persistence in vivo is the Sap (sensitivity to antimicrobial peptides) ABC transporter system. Current models propose a direct role for Sap in heme and antimicrobial peptide (AMP) transport. Here, the crystal structure of SapA, the periplasmic component of Sap, in a closed, ligand bound conformation, is presented. Phylogenetic and cavity volume analysis predicts that the small, hydrophobic SapA central ligand binding cavity is most likely occupied by a hydrophobic di- or tri- peptide. The cavity is of insufficient volume to accommodate heme or folded AMPs. Crystal structures of SapA have identified surface interactions with heme and dsRNA. Heme binds SapA weakly (Kd 282 μM) through a surface exposed histidine, while the dsRNA is coordinated via residues which constitute part of a conserved motif (estimated Kd 4.4 μM). The RNA affinity falls within the range observed for characterized RNA/protein complexes. Overall, we describe in molecular-detail the interactions of SapA with heme and dsRNA and propose a role for SapA in the transport of di- or tri-peptides.
|
Oct 2021
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Muhamamd
Faheem
,
Napoleao
Fonseca Valadares
,
Jose
Brandao-Neto
,
Domenico
Bellini
,
Patrick
Collins
,
Nicholas M.
Pearce
,
Louise
Bird
,
Juliana
Torini De Souza
,
Raymond
Owens
,
Humberto
Pereira
,
Frank
Von Delft
,
João Alexandre Ribeiro Gonçalves
Barbosa
Diamond Proposal Number(s):
[11175]
Open Access
Abstract: Several Schistosoma species cause Schistosomiasis, an endemic disease in 78 countries that is ranked second amongst the parasitic diseases in terms of its socioeconomic impact and human health importance. The drug recommended for treatment by the WHO is praziquantel (PZQ), but there are concerns associated with PZQ, such as the lack of information about its exact mechanism of action, its high price, its effectiveness – which is limited to the parasite’s adult form – and reports of resistance. The parasites lack the de novo purine pathway, rendering them dependent on the purine salvage pathway or host purine bases for nucleotide synthesis. Thus, the Schistosoma purine salvage pathway is an attractive target for the development of necessary and selective new drugs. In this study, the purine nucleotide phosphorylase II (PNP2), a new isoform of PNP1, was submitted to a high-throughput fragment-based hit discovery using a crystallographic screening strategy. PNP2 was crystallized and crystals were soaked with 827 fragments, a subset of the Maybridge 1000 library. X-ray diffraction data was collected and structures were solved. Out of 827-screened fragments we have obtained a total of 19 fragments that show binding to PNP2. 14 of these fragments bind to the active site of PNP2, while five were observed in three other sites. Here we present the first fragment screening against PNP2.
|
Sep 2021
|
|
B21-High Throughput SAXS
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Open Access
Abstract: PSD-95 is a member of Membrane Associated Guanylate Kinase class of proteins which form scaffolding interactions with partner proteins including ion and receptor channels. PSD-95 is directly implicated in modulating the electrical responses of excitable cells. The first two PSD-95/Disks Large/Zona Occludens (PDZ) domains of PSD-95 have been shown to be the key component in the formation of channel clusters. We report crystal structures of this dual domain in both in apo- and ligand-bound form; thermodynamic analysis of ligand association and Small Angle X-ray Scattering of the dual domain in the absence and presence of ligands. These experiments reveal that the ligated double domain forms a 3-dimensional scaffold which can be described by a Spacegroup. The concentration of the components in this study is comparable to those found in compartments of excitable cells such as the postsynaptic density and juxta-paranodes of Ranvier. These in vitro experiments inform the basis of the scaffolding function of PSD-95 and provide a detailed model for scaffold formation by the PDZ domains of PSD-95.
|
Jun 2020
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Juliana Roverta
Torini
,
Adriano
De Freitas Fernandes
,
Vitor Hugo
Balasco Serrao
,
Larissa
Romanello
,
Louise
Bird
,
Joanne E.
Nettleship
,
Raymond J.
Owens
,
Jose
Brandao-Neto
,
Ana Eliza
Zeraik
,
Ricardo
Demarco
,
Humberto
D'Muniz Pereira
Diamond Proposal Number(s):
[5073, 14493]
Abstract: Nucleoside diphosphate kinases (NDPKs) are crucial to keep the high triphosphate nucleotide levels in the biological process. The enzymatic mechanism has been extensively described; however, the structural characteristics and kinetic parameters have never been fully determined. In Schistosoma mansoni, NDPK (SmNDPK) is directly involved in the pyrimidine and purine salvage pathways, being essential for nucleotide metabolism. The SmNDPK enzymatic activity is the highest of the known purine metabolisms when compared to the mammalian NDPKs, suggesting the importance of this enzyme in the worm metabolism. Here, we report the recombinant expression of SmNDPK that resulted in 1.7 and 1.9 Å apo-form structure in different space-groups, as well as the 2.1 Å SmNDPK.ADP complex. The binding and kinetic assays reveal the ATP-dependence for enzyme activation. Moreover, in situ hybridization showed that SmNDPK transcripts are found in reproductive organs and in the esophagus gland of adult worms, which can be intrinsically related with the oviposition and digestive processes. These results will help us fully understand the crucial participation of this enzyme in Schistosoma mansoni and its importance for the pathology of the disease.
|
Jul 2019
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I24-Microfocus Macromolecular Crystallography
|
Larissa
Romanello
,
Ana Eliza
Zeraik
,
Adriano
De Freitas Fernandes
,
Juliana Roberta
Torini
,
Louise E.
Bird
,
Joanne E.
Nettleship
,
Heather
Rada
,
Yamini
Reddivari
,
Ray J.
Owens
,
Vitor Hugo Balasco
Serrão
,
Ricardo
Demarco
,
Jose
Brandao-Neto
,
Humberto
D'Muniz Pereira
Diamond Proposal Number(s):
[5073]
Abstract: Schistosoma mansoni, the parasite responsible for schistosomiasis, lacks the “de novo” purine biosynthetic pathway and depends entirely on the purine salvage pathway for the supply of purines. Numerous reports of praziquantel resistance have been described, as well as stimulated efforts to develop new drugs against schistosomiasis. Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is a key enzyme of the purine salvage pathway. Here, we describe a crystallographic structure of the S. mansoni HPGRT-1 (SmHGPRT), complexed with IMP at a resolution of 2.8Ǻ. Four substitutions were identified in the region of the active site between SmHGPRT-1 and human HGPRT. We also present data from RNA-Seq and WISH, suggesting that some isoforms of HGPRT might be involved in the process related to sexual maturation and reproduction in worms; furthermore, its enzymatic assays show that the isoform SmHGPRT-3 does not present the same catalytic efficiency as other isoforms. Finally, although other studies have previously suggested this enzyme as a potential antischistosomal chemotherapy target, the kinetics parameters reveal the impossibility to use SmHGPRT as an efficient chemotherapeutic target.
|
Feb 2019
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Juliana Roberta
Torini
,
Larissa
Romanello
,
Fernanda Aparecida Heleno
Batista
,
Vitor Hugo Balasco
Serrao
,
Muhamamd
Faheem
,
Ana Eliza
Zeraik
,
Louise
Bird
,
Joanne E.
Nettleship
,
Yamini
Reddivari
,
Ray
Owens
,
Ricardo
Demarco
,
Júlio César
Borges
,
Jose
Brandao-Neto
,
Humberto
D'Muniz Pereira
Open Access
Abstract: Purine nucleoside phosphorylases (PNPs) play an important role in the blood fluke parasite Schistosoma mansoni as a key enzyme of the purine salvage pathway. Here we present the structural and kinetic characterization of a new PNP isoform from S. mansoni, SmPNP2. Thermofluorescence screening of different ligands suggested cytidine and cytosine are potential ligands. The binding of cytosine and cytidine were confirmed by isothermal titration calorimetry, with a KD of 27 μM for cytosine, and a KM of 76.3 μM for cytidine. SmPNP2 also displays catalytic activity against inosine and adenosine, making it the first described PNP with robust catalytic activity towards both pyrimidines and purines. Crystal structures of SmPNP2 with different ligands were obtained and comparison of these structures with the previously described S. mansoni PNP (SmPNP1) provided clues for the unique capacity of SmPNP2 to bind pyrimidines. When compared with the structure of SmPNP1, substitutions in the vicinity of SmPNP2 active site alter the architecture of the nucleoside base binding site thus permitting an alternative binding mode for nucleosides, with a 180° rotation from the canonical binding mode. The remarkable plasticity of this binding site enhances our understanding of the correlation between structure and nucleotide selectivity, thus suggesting new ways to analyse PNP activity.
|
Sep 2018
|
|
B21-High Throughput SAXS
|
John G.
Mina
,
Julie K.
Thye
,
Amjed Q. I.
Alqaisi
,
Louise
Bird
,
Robert H.
Dods
,
Morten
Groftehauge
,
Jackie A.
Mosely
,
Steven
Pratt
,
Hosam
Shams-Eldin
,
Ralph T.
Schwarz
,
Ehmke
Pohl
,
Paul W.
Denny
Diamond Proposal Number(s):
[4002]
Abstract: Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause fetal damage and abortion in both animals and humans. Sphingolipids are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Here we report the identification, isolation and analyses of the Toxoplasma serine palmitoyltransferase, an enzyme catalyzing the first and rate-limiting step in sphingolipid biosynthesis - the condensation of serine and palmitoyl-CoA. In all eukaryotes analyzed to date, serine palmitoyltransferase is a highly conserved heterodimeric enzyme complex. However, biochemical and structural analyses demonstrated the apicomplexan orthologue to be a functional, homodimeric serine palmitoyltransferase localized to the endoplasmic reticulum. Furthermore, phylogenetic studies indicated that it was evolutionarily related to the prokaryotic serine palmitoyltransferase, identified in the Sphingomonadaceae as a soluble homodimeric enzyme. Therefore this enzyme, conserved throughout the Apicomplexa, is likely to have been obtained via lateral gene transfer from a prokaryote. Importantly, the structural and evolutionary divergence of the apicomplexan serine palmitoyltransferase suggests that it might have significant potential as a drug target.
|
Jun 2017
|
|
I02-Macromolecular Crystallography
|
Larissa
Romanello
,
Vitor Hugo Balasco
Serrao
,
Juliana Roberta Torini
De Souza
,
Louise E.
Bird
,
Joanne E.
Nettleship
,
Heather
Rada
,
Yamini
Reddivari
,
Ray J.
Owens
,
Ricardo
De Marco
,
Jose
Brandao-Neto
,
Humberto
D' Muniz Pereira
Diamond Proposal Number(s):
[5073, 5894]
Abstract: Schistosoma mansoni is the parasite responsible for schistosomiasis, a disease that affects about 218 million people worldwide. Currently, both direct treatment and disease control initiatives rely on chemotherapy using a single drug, praziquantel. Concerns over the possibility of resistance developing to praziquantel, have stimulated efforts to develop new drugs for the treatment of schistosomiasis. Schistosomes do not have the de novo purine biosynthetic pathway, and instead depend entirely on the purine salvage pathway to supply its need for purines. The purine salvage pathway has been reported as a potential target for developing new drugs against schistosomiasis. Adenylosuccinate lyase (SmADSL) is an enzyme in this pathway, which cleaves adenylosuccinate (ADS) into adenosine 5'-monophosphate (AMP) and fumarate. SmADSL kinetic characterization was performed by isothermal titration calorimetry (ITC) using both ADS and SAICAR as substrates. Structures of SmADSL in Apo form and in complex with AMP were elucidated by x-ray crystallography revealing a highly conserved tetrameric structure required for their function since the active sites is formed from residues of three different subunits. The active sites are also highly conserved between species and it is difficult to identify a potent species-specific inhibitor for the development of new therapeutic agents. In contrast, several mutagenesis studies have demonstrated the importance of dimeric interface residues in the stability of the quaternary structure of the enzyme. The lower conservation of these residues between SmADSL and human ADSL could be used to lead the development of anti-schistosomiasis drugs based on disruption of subunit interfaces. These structures and kinetics data add another layer of information to Schistosoma mansoni purine salvage pathway.
|
Mar 2017
|
|
B21-High Throughput SAXS
|
Muhamamd
Faheem
,
Diogo
Martins-De-Sa
,
Julia F. D.
Vidal
,
Alice C. M.
Álvares
,
Jose
Brandao-Neto
,
Louise E.
Bird
,
Mark D.
Tully
,
Frank
Von Delft
,
Betulia M.
Souto
,
Betania F.
Quirino
,
Sonia M.
Freitas
,
João Alexandre R. G.
Barbosa
Open Access
Abstract: A current metagenomics focus is to interpret and transform collected genomic data into biological information. By combining structural, functional and genomic data we have assessed a novel bacterial protein selected from a carbohydrate-related activity screen in a microbial metagenomic library from Capra hircus (domestic goat) gut. This uncharacterized protein was predicted as a bacterial cell wall-modifying enzyme (CWME) and shown to contain four domains: an N-terminal, a cysteine protease, a peptidoglycan-binding and an SH3 bacterial domain. We successfully cloned, expressed and purified this putative cysteine protease (PCP), which presented autoproteolytic activity and inhibition by protease inhibitors. We observed cell wall hydrolytic activity and ampicillin binding capacity, a characteristic of most bacterial CWME. Fluorimetric binding analysis yielded a Kb of 1.8 × 105 M−1 for ampicillin. Small-angle X-ray scattering (SAXS) showed a maximum particle dimension of 95 Å with a real-space Rg of 28.35 Å. The elongated molecular envelope corroborates the dynamic light scattering (DLS) estimated size. Furthermore, homology modeling and SAXS allowed the construction of a model that explains the stability and secondary structural changes observed by circular dichroism (CD). In short, we report a novel cell wall-modifying autoproteolytic PCP with insight into its biochemical, biophysical and structural features.
|
Dec 2016
|
|
I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[7864]
Abstract: Thymidine kinase (TK) is a key enzyme in the pyrimidine salvage pathway which catalyzes the transfer of the γ-phosphate of ATP to 2'-deoxythymidine (dThd) forming thymidine monophosphate (dTMP). Unlike other type II TKs, the Trypanosoma brucei enzyme (TbTK) is a tandem protein with two TK homolog domains of which only the C-terminal one is active. In this study, we establish that TbTK is essential for parasite viability and cell cycle progression, independently of extracellular pyrimidine concentrations. We show that expression of TbTK is cell cycle regulated and that depletion of TbTK leads to strongly diminished dTTP pools and DNA damage indicating intracellular dThd to be an essential intermediate metabolite for the synthesis of thymine-derived nucleotides. In addition, we report the X-ray structure of the catalytically active domain of TbTK in complex with dThd and dTMP at resolutions up to 2.2 Å. In spite of the high conservation of the active site residues, the structures reveal a widened active site cavity near the nucleobase moiety compared to the human enzyme. Our findings strongly support TbTK as a crucial enzyme in dTTP homeostasis and identify structural differences within the active site that could be exploited in the process of rational drug design. This article is protected by copyright. All rights reserved.
|
Jul 2016
|
|