I04-Macromolecular Crystallography
|
Torkild
Visnes
,
Carlos
Benítez-buelga
,
Armando
Cázares-körner
,
Kumar
Sanjiv
,
Bishoy M. F.
Hanna
,
Oliver
Mortusewicz
,
Varshni
Rajagopal
,
Julian J.
Albers
,
Daniel W
Hagey
,
Tove
Bekkhus
,
Saeed
Eshtad
,
Juan Miguel
Baquero
,
Geoffrey
Masuyer
,
Olov
Wallner
,
Sarah
Müller
,
Therese
Pham
,
Camilla
Göktürk
,
Azita
Rasti
,
Sharda
Suman
,
Raúl
Torres-ruiz
,
Antonio
Sarno
,
Elisée
Wiita
,
Evert J.
Homan
,
Stella
Karsten
,
Karthick
Marimuthu
,
Maurice
Michel
,
Tobias
Koolmeister
,
Martin
Scobie
,
Olga
Loseva
,
Ingrid
Almlöf
,
Judith Edda
Unterlass
,
Aleksandra
Pettke
,
Johan
Boström
,
Monica
Pandey
,
Helge
Gad
,
Patrick
Herr
,
Ann-sofie
Jemth
,
Samir
El andaloussi
,
Christina
Kalderén
,
Sandra
Rodriguez-perales
,
Javier
Benítez
,
Hans E
Krokan
,
Mikael
Altun
,
Pal
Stenmark
,
Ulrika Warpman
Berglund
,
Thomas
Helleday
Diamond Proposal Number(s):
[15806]
Open Access
Abstract: Altered oncogene expression in cancer cells causes loss of redox homeostasis resulting in oxidative DNA damage, e.g. 8-oxoguanine (8-oxoG), repaired by base excision repair (BER). PARP1 coordinates BER and relies on the upstream 8-oxoguanine-DNA glycosylase (OGG1) to recognise and excise 8-oxoG. Here we hypothesize that OGG1 may represent an attractive target to exploit reactive oxygen species (ROS) elevation in cancer. Although OGG1 depletion is well tolerated in non-transformed cells, we report here that OGG1 depletion obstructs A3 T-cell lymphoblastic acute leukemia growth in vitro and in vivo, validating OGG1 as a potential anti-cancer target. In line with this hypothesis, we show that OGG1 inhibitors (OGG1i) target a wide range of cancer cells, with a favourable therapeutic index compared to non-transformed cells. Mechanistically, OGG1i and shRNA depletion cause S-phase DNA damage, replication stress and proliferation arrest or cell death, representing a novel mechanistic approach to target cancer. This study adds OGG1 to the list of BER factors, e.g. PARP1, as potential targets for cancer treatment.
|
Nov 2020
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[21625]
Open Access
Abstract: Organotin compounds are highly toxic environmental pollutants with neurotoxic and endocrine-disrupting effects. They are potent inhibitors of glutathione transferases (GSTs), thus impeding their detoxication and antioxidant functions. Several GSTs, including equine GST A3-3 (EcaGST A3-3), exhibit steroid double-bond isomerase activity and are involved in the biosynthesis of testosterone and progesterone. We have performed enzyme kinetics analyses of the inhibition of EcaGST A3-3 by organotin compounds. We have also solved crystal structures of EcaGST A3-3 in complexes with glutathione, and with glutathione together with covalently bound triethyltin. Our structural data indicate that the tin atom forms strong bonds with a covalent character not only with the glutathione, but also with a tyrosyl residue of the enzyme itself, thereby preventing the release of the glutathione-organotin adduct and completely blocking the enzyme function. This work presents a structural basis for the general mechanism of GST inhibition by organotin compounds and contributes to the understanding of their neurotoxic and endocrine disrupting effects.
Our enzyme kinetics and structural data on EcaGST A3-3 explain on a molecular level the neurotoxic and endocrine disrupting effects of organotin pollutants.
|
Oct 2020
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[11265]
Abstract: Ribonucleotide reductase (RNR) is a central enzyme for DNA building block synthesis. Most aerobic organisms, including nearly all eukaryotes, have class I RNRs consisting of R1 and R2 subunits. The catalytic R1 subunit contains an overall activity site that can allosterically turn the enzyme on or off by the binding of ATP or dATP, respectively. The mechanism behind the ability to turn the enzyme off via the R1 subunit involves the formation of different types of R1 oligomers in most studied species and R1-R2 octamers in Escherichia coli. To better understand the distribution of different oligomerization mechanisms, we characterized the enzyme from Clostridium botulinum, which belongs to a subclass of class I RNRs not studied before. The recombinantly expressed enzyme was analyzed by size exclusion chromatography, gas-phase electrophoretic mobility macromolecular analysis, electron microscopy, x-ray crystallography, and enzyme assays. Interestingly, it shares the ability of the E. coli RNR to form inhibited R1-R2 octamers in the presence of dATP but, unlike the E. coli enzyme, cannot be turned off by combinations of ATP and dGTP/dTTP. A phylogenetic analysis of class I RNRs suggests that activity regulation is not ancestral, but was gained after the first subclasses diverged and that RNR subclasses with inhibition mechanisms involving R1 oligomerization belong to a clade separated from the two subclasses forming R1-R2 octamers. These results give further insight into activity regulation in class I RNRs as an evolutionarily dynamic process.
|
Sep 2020
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[15806]
Open Access
Abstract: Botulinum neurotoxins (BoNTs) can be used therapeutically to treat a wide range of neuromuscular and neurological conditions. A collection of natural BoNT variants exists which can be classified into serologically distinct serotypes (BoNT/B), and further divided into subtypes (BoNT/B1, B2, …). BoNT subtypes share a high degree of sequence identity within the same serotype yet can display large variation in toxicity. One such example is BoNT/B2, which was isolated from Clostridium botulinum strain 111 in a clinical case of botulism, and presents a 10-fold lower toxicity than BoNT/B1. In an effort to understand the molecular mechanisms behind this difference in potency, we here present the crystal structures of BoNT/B2 in complex with the ganglioside receptor GD1a, and with the human synaptotagmin I protein receptor. We show, using receptor-binding assays, that BoNT/B2 has a slightly higher affinity for GD1a than BoNT/B1, and confirm its considerably weaker affinity for its protein receptors. Although the overall receptor-binding mechanism is conserved for both receptors, structural analysis suggests the lower affinity of BoNT/B2 is the result of key substitutions, where hydrophobic interactions important for synaptotagmin-binding are replaced by polar residues. This study provides a template to drive the development of future BoNT therapeutic molecules centered on assessing the natural subtype variations in receptor-binding that appears to be one of the principal stages driving toxicity.
|
Sep 2020
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[15806]
Abstract: The bifunctional human enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) catalyzes two essential steps in the de novo purine biosynthesis pathway. PAICS is overexpressed in many cancers and could be a promising target for the development of cancer therapeutics. Here, using gene knockdowns and clonogenic survival and cell viability assays, we demonstrate that PAICS is required for growth and survival of prostate cancer cells. PAICS catalyzes the carboxylation of aminoimidazole ribonucleotide (AIR) and the subsequent conversion of carboxyaminoimidazole ribonucleotide (CAIR) and L-aspartate to N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR). Of note, we present the first structures of human octameric PAICS in complexes with native ligands. In particular, we report the structure of PAICS with CAIR bound in the active sites of both domains and SAICAR bound in one of the SAICAR synthetase domains. Moreover, we report the PAICS structure with SAICAR and an ATP analog occupying the SAICAR synthetase active site. These structures provide insight into substrate and product binding and the architecture of the active sites, disclosing important structural information for rational design of PAICS inhibitors as potential anticancer drugs.
|
Jun 2020
|
|
I04-Macromolecular Crystallography
|
Linxiang
Yin
,
Geoffrey
Masuyer
,
Sicai
Zhang
,
Jie
Zhang
,
Shin-ichiro
Miyashita
,
David
Burgin
,
Laura
Lovelock
,
Shu-fen
Coker
,
Tian-min
Fu
,
Pal
Stenmark
,
Min
Dong
Diamond Proposal Number(s):
[15806]
Open Access
Abstract: Botulinum neurotoxins (BoNTs) are a family of bacterial toxins with seven major serotypes (BoNT/A-G). The ability of these toxins to target and bind to motor nerve terminals is a key factor determining their potency and efficacy. Among these toxins, BoNT/B is one of the two types approved for medical and cosmetic uses. Besides binding to well-established receptors, an extended loop in the C-terminal receptor-binding domain (HC) of BoNT/B (HC/B) has been proposed to also contribute to toxin binding to neurons by interacting with lipid membranes (termed lipid-binding loop [LBL]). Analogous loops exist in the HCs of BoNT/C, D, G, and a chimeric toxin DC. However, it has been challenging to detect and characterize binding of LBLs to lipid membranes. Here, using the nanodisc system and biolayer interferometry assays, we find that HC/DC, C, and G, but not HC/B and HC/D, are capable of binding to receptor-free lipids directly, with HC/DC having the highest level of binding. Mutagenesis studies demonstrate the critical role of consecutive aromatic residues at the tip of the LBL for binding of HC/DC to lipid membranes. Taking advantage of this insight, we then create a "gain-of-function" mutant HC/B by replacing two nonaromatic residues at the tip of its LBL with tryptophan. Cocrystallization studies confirm that these two tryptophan residues do not alter the structure of HC/B or the interactions with its receptors. Such a mutated HC/B gains the ability to bind receptor-free lipid membranes and shows enhanced binding to cultured neurons. Finally, full-length BoNT/B containing two tryptophan mutations in its LBL, together with two additional mutations (E1191M/S1199Y) that increase binding to human receptors, is produced and evaluated in mice in vivo using Digit Abduction Score assays. This mutant toxin shows enhanced efficacy in paralyzing local muscles at the injection site and lower systemic diffusion, thus extending both safety range and duration of paralysis compared with the control BoNT/B. These findings establish a mechanistic understanding of LBL-lipid interactions and create a modified BoNT/B with improved therapeutic efficacy.
|
Mar 2020
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[15806]
Open Access
Abstract: MutT homologue 1 (MTH1) removes oxidized nucleotides from the nucleotide pool and thereby prevents their incorporation into the genome and thereby reduces genotoxicity. We previously reported that MTH1 is an efficient catalyst of O6-methyl-dGTP hydrolysis suggesting that MTH1 may also sanitize the nucleotide pool from other methylated nucleotides. We here show that MTH1 efficiently catalyzes the hydrolysis of N6-methyl-dATP to N6-methyl-dAMP and further report that N6-methylation of dATP drastically increases the MTH1 activity. We also observed MTH1 activity with N6-methyl-ATP, albeit at a lower level. We show that N6-methyl-dATP is incorporated into DNA in vivo, as indicated by increased N6-methyl-dA DNA levels in embryos developed from MTH1 knock-out zebrafish eggs microinjected with N6-methyl-dATP compared with noninjected embryos. N6-methyl-dATP activity is present in MTH1 homologues from distantly related vertebrates, suggesting evolutionary conservation and indicating that this activity is important. Of note, N6-methyl-dATP activity is unique to MTH1 among related NUDIX hydrolases. Moreover, we present the structure of N6-methyl-dAMP-bound human MTH1, revealing that the N6-methyl group is accommodated within a hydrophobic active-site sub-pocket explaining why N6-methyl-dATP is a good MTH1 substrate. N6-methylation of DNA and RNA has been reported to have epigenetic roles and to affect mRNA metabolism. We propose that MTH1 acts in concert with adenosine deaminase-like protein isoform 1 (ADAL1) to prevent incorporation of N6-methyl-(d)ATP into DNA and RNA. This would hinder potential dysregulation of epigenetic control and RNA metabolism via conversion of N6-methyl-(d)ATP to N6-methyl-(d)AMP, followed by ADAL1 catalyzed deamination producing (d)IMP that can enter the nucleotide salvage pathway.
|
Mar 2020
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[21625]
Open Access
Abstract: Ecdysteroids are critically important for the formation of the insect exoskeleton. Cholesterol is a precursor of ecdysone and its active form 20‐hydroxyecdysone, but some steps in the ecdysteroid biosynthesis pathway remain unknown. An essential requirement of glutathione (GSH) transferase GSTE14 in ecdysteroid biosynthesis has been established in Drosophila melanogaster, but its function is entirely unknown. Here, we have determined the crystal structure of GSTE14 in complex with GSH and investigated the kinetic properties of GSTE14 with alternative substrates. GSTE14 has high‐ranking steroid double‐bond isomerase activity, albeit 50‐fold lower than the most efficient mammalian GSTs. Corresponding steroid isomerizations are unknown in insects, and their exact physiological role remains to be shown. Nonetheless, the essential enzyme GSTE14 is here demonstrated to be catalytically competent and have a steroid‐binding site.
|
Jan 2020
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[11265]
Abstract: Assembly of the mitochondrial respiratory chain requires the coordinated synthesis of mitochondrial and nuclear encoded subunits, redox co-factor acquisition, and correct joining of the subunits to form functional complexes. The conserved Cbp3–Cbp6 chaperone complex binds newly synthesized cytochrome b and supports the ordered acquisition of the heme co-factors. Moreover, it functions as a translational activator by interacting with the mitoribosome. Cbp3 consists of two distinct domains, an N-terminal domain present in mitochondrial Cbp3 homologs, and a highly conserved C-terminal domain comprising a ubiquinol–cytochrome c chaperone region. Here, we solved the crystal structure of this C-terminal domain from a bacterial homolog at 1.4 Å resolution, revealing a unique all-helical fold. This structure allowed mapping of the interaction sites of yeast Cbp3 with Cbp6 and cytochrome b via site-specific photo-crosslinking. We propose that mitochondrial Cbp3 homologs carry an N-terminal extension that positions the conserved C-terminal domain at the ribosomal tunnel exit for an efficient interaction with its substrate, the newly synthesized cytochrome b protein.
|
Sep 2019
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[15806]
Abstract: Botulinum neurotoxins (BoNTs) are the most potent toxins known. So far, eight serotypes have been identified that all act as zinc‐dependent endopeptidases targeting SNARE proteins and inhibiting the release of neurotransmitters. Recently, the first botulinum toxin‐like protein was identified outside the Clostridial genus, designated BoNT/Wo in the genome of Weissella oryzae. Here, we report the 1.6 Å X‐ray crystal structure of the light chain of BoNT/Wo (LC/Wo). LC/Wo presents the core fold common to BoNTs but has an unusually wide, open, and negatively charged catalytic pocket, with an additional Ca2+ ion besides the zinc ion and a unique ß‐hairpin motif. The structural information will help establish the substrate profile of BoNT/Wo and help our understanding of how BoNT evolved.
|
May 2019
|
|