I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[25625]
Open Access
Abstract: The discovery of a new physical process in manganese metal is reported. This process will also be present for all manganese-containing materials in condensed matter. The process was discovered by applying our new technique of XR-HERFD (extended-range high-energy-resolution fluorescence detection), which was developed from the popular high-resolution RIXS (resonant inelastic X-ray scattering) and HERFD approaches. The acquired data are accurate to many hundreds of standard deviations beyond what is regarded as the criterion for `discovery'. Identification and characterization of many-body processes can shed light on the X-ray absorption fine-structure spectra and inform the scientist on how to interpret them, hence leading to the ability to measure the dynamical nanostructures which are observable using the XR-HERFD method. Although the many-body reduction factor has been used universally in X-ray absorption spectroscopy in analysis over the past 30 years (thousands of papers per year), this experimental result proves that many-body effects are not representable by any constant reduction factor parameter. This paradigm change will provide the foundation for many future studies and X-ray spectroscopy.
|
May 2023
|
|
I18-Microfocus Spectroscopy
|
Alexander P.
Morrell
,
Richard A.
Martin
,
Helen M
Roberts
,
Hiram
Castillo-Michel
,
J. Frederick W.
Mosselmans
,
Kalotina
Geraki
,
Adrian T.
Warfield
,
Paul
Lingor
,
Wasif
Qayyum
,
Daniel
Graf
,
Maria
Febbraio
,
Owen
Addison
Diamond Proposal Number(s):
[17638, 23569]
Open Access
Abstract: Exposures to exogenous particles is of increasing concern to human health. Characterising the concentrations, chemical species, distribution, and involvement of the stimulus with the tissue microanatomy is essential in understanding the associated biological response. However, no single imaging technique can interrogate all these features at once which confounds and limits correlative analyses. Developments of synchronous imaging strategies, allowing multiple features to be identified simultaneously, is essential to assess spatial relationships between these key features with greater confidence. Here we present data to first highlight complications of correlative analysis between the tissue microanatomy and elemental composition associated with imaging serial tissue sections. This is achieved by assessing both the cellular and elemental distribution in 3-dimensional space using optical microscopy on serial sections and confocal X-ray fluorescence spectroscopy on bulk samples respectively. We propose a new imaging strategy using lanthanide tagged antibodies with X-ray fluorescence spectroscopy. Using simulations, a series of lanthanide tags were identified as candidate labels for scenarios where tissue sections are imaged. The feasibility and value of the proposed approach is shown where an exposure of Ti was identified concurrently with CD45 positive cells at sub-cellular resolutions. Significant heterogeneity in the distribution of exogenous particles and cells can be present between immediately adjacent serial sections showing clear need of synchronous imaging methods. The proposed approach enables elemental compositions to be correlated with the tissue microanatomy in a highly multiplexed and non-destructive manner at high spatial resolutions with the opportunity for subsequent guided analysis.
|
May 2023
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[15475, 15215, 12700]
Open Access
Abstract: The agricultural soils of West Limerick, Ireland, contain very localised, extremely high natural Se concentrations that reach levels that are very toxic to grazing livestock. The Carboniferous shales that formed in anoxic deep-water marine environments are the source of the selenium, which, along with the other redox-sensitive elements of molybdenum, uranium, arsenic and vanadium, were mobilised and reprecipitated in post-glacial anoxic marshes. The result has been a history of selenosis and molybdenosis in livestock in this important dairy province. Soils collected at 10–20 cm from five different agricultural sites were analysed, and all yielded concentrations greatly in excess of the safe Se limits of 3–10 mg kg−1; the highest value recorded was 1265.8 mg kg−1 Se. The highest recorded value for Mo in these soils was 1627.5 mg kg−1, and for U, 658.8 mg kg−1. There was a positive correlation between Se, Mo U and organic matter in the soils. Analysis of non-accumulator pasture grasses (Lolium perenne (perennial ryegrass), Festuca arundinacea (tall fescue), Dactylis glomerata (cocksfoot) and Phleum pretense (timothy grass)) revealed the shoot/leaf to contain up to 78.05 mg kg−1 Se while Trifolium repens (white clover) leaves contained 296.15 mg kg−1 Se. An in situ growing experiment using the Se accumulator species Brassica oleracea revealed 971.2 mg kg−1 Se in the leaves of premier kale, which also contained 1000.4 mg kg−1 Mo. Translocation factors (TFs) were generally higher for Mo than Se across all plant species. Combined X-ray absorption near edge spectroscopy (XANES) with micro-X-ray fluorescence (μ-XRF) showed the Se was present in the soil predominantly as the reduced immobile phase, elemental Se (Se0), but also as bioavailable organoselenium species, mainly selenomethionine (SeMet). SeMet was also the main species identified within both the Se non-accumulator and Se accumulator plants. The Se soil–plant system in West Limerick is dominated by SeMet, and uptake into the cattle pasture results in selenosis in the grazing dairy herds. The hyperaccumulating Brassica oleracea species could be used to extract both the Se and Mo to reduce the toxicity of the blighted fields.
|
Mar 2023
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[25495]
Abstract: Magnetite nanoparticles possess numerous fundamental, biomedical, and industrial applications, many of which depend on tuning the magnetic properties. This is often achieved by the incorporation of trace and minor elements into the magnetite lattice. Such incorporation was shown to depend strongly on the magnetite formation pathway (i.e., abiotic vs biological), but the mechanisms controlling element partitioning between magnetite and its surrounding precipitation solution remain to be elucidated. Here, we used a combination of theoretical modeling (lattice and crystal field theories) and experimental evidence (high-resolution inductively coupled plasma–mass spectrometry and X-ray absorption spectroscopy) to demonstrate that element incorporation into abiotic magnetite nanoparticles is controlled principally by cation size and valence. Elements from the first series of transition metals (Cr to Zn) constituted exceptions to this finding, as their incorporation appeared to be also controlled by the energy levels of their unfilled 3d orbitals, in line with crystal field mechanisms. We finally show that element incorporation into biological magnetite nanoparticles produced by magnetotactic bacteria (MTB) cannot be explained by crystal–chemical parameters alone, which points to the biological control exerted by the bacteria over the element transfer between the MTB growth medium and the intracellular environment. This screening effect generates biological magnetite with a purer chemical composition in comparison to the abiotic materials formed in a solution of similar composition. Our work establishes a theoretical framework for understanding the crystal–chemical and biological controls of trace and minor cation incorporation into magnetite, thereby providing predictive methods to tailor the composition of magnetite nanoparticles for improved control over magnetic properties.
|
Jan 2023
|
|
B18-Core EXAFS
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[20872, 24074, 28515]
Open Access
Abstract: Advanced Cr-doped UO2 fuels are essential for driving safe and efficient generation of nuclear energy. Although widely deployed, little is known about their fundamental chemistry, which is a critical gap for development of new fuel materials and radioactive waste management strategies. Utilising an original approach, we directly evidence the chemistry of Cr(3+)2O3–doped U(4+)O2. Advanced high-flux, high-spectral purity X-ray absorption spectroscopy (XAS), corroborated by diffraction, Raman spectroscopy and high energy resolved fluorescence detection-XAS, is used to establish that Cr2+ directly substitutes for U4+, accompanied by U5+ and oxygen vacancy charge compensation. Extension of the analysis to heat-treated simulant nuclear fuel reveals a mixed Cr2+/3+ oxidation state, with Cr in more than one physical form, explaining the substantial discrepancies that exist in the literature. Successful demonstration of this analytical advance, and the scientific underpinning it provides, opens opportunities for an expansion in the range of dopants utilised in advanced UO2 fuels.
|
Dec 2022
|
|
B18-Core EXAFS
|
Connaugh M.
Fallon
,
William R.
Bower
,
Brian A.
Powell
,
Francis R.
Livens
,
Ian C.
Lyon
,
Alana E.
Mcnulty
,
Kathryn
Peruski
,
J. Frederick W.
Mosselmans
,
Daniel I.
Kaplan
,
Daniel
Grolimund
,
Peter
Warnicke
,
Dario
Ferreira-Sanchez
,
Marja Siitari
Kauppi
,
Gianni F.
Vettese
,
Samuel
Shaw
,
Katherine
Morris
,
Gareth T. W.
Law
Diamond Proposal Number(s):
[16611, 16939, 17243]
Open Access
Abstract: Uranium dioxide (UO2) and metaschoepite (UO3•nH2O) particles have been identified as contaminants at nuclear sites. Understanding their behavior and impact is crucial for safe management of radioactively contaminated land and to fully understand U biogeochemistry. The Savannah River Site (SRS) (South Carolina, USA), is one such contaminated site, following historical releases of U-containing wastes to the vadose zone. Here, we present an insight into the behavior of these two particle types under dynamic conditions representative of the SRS, using field lysimeters (15 cm D x 72 cm L). Discrete horizons containing the different particle types were placed at two depths in each lysimeter (25 cm and 50 cm) and exposed to ambient rainfall for 1 year, with an aim of understanding the impact of dynamic, shallow subsurface conditions on U particle behavior and U migration. The dissolution and migration of U from the particle sources and the speciation of U throughout the lysimeters was assessed after 1 year using a combination of sediment digests, sequential extractions, and bulk and μ-focus X-ray spectroscopy. In the UO2 lysimeter, oxidative dissolution of UO2 and subsequent migration of U was observed over 1–2 cm in the direction of waterflow and against it. Sequential extractions of the UO2 sources suggest they were significantly altered over 1 year. The metaschoepite particles also showed significant dissolution with marginally enhanced U migration (several cm) from the sources. However, in both particle systems the released U was quantitively retained in sediment as a range of different U(IV) and U(VI) phases, and no detectable U was measured in the lysimeter effluent. The study provides a useful insight into U particle behavior in representative, real-world conditions relevant to the SRS, and highlights limited U migration from particle sources due to secondary reactions with vadose zone sediments over 1 year.
|
Dec 2022
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
I18-Microfocus Spectroscopy
|
Agnieszka
Dybowska
,
Paul
Schofield
,
Laura
Newsome
,
Richard
Herrington
,
Julian F. W.
Mosselmans
,
Burkhard
Kaulich
,
Majid
Kazemian
,
Tohru
Araki
,
Thomas J.
Skiggs
,
Jens
Kruger
,
Anne
Oxley
,
Rachel L.
Norman
,
Jonathan R.
Lloyd
Diamond Proposal Number(s):
[14882, 14908, 17882]
Open Access
Abstract: The Piauí laterite (NE Brazil) was initially evaluated for Ni but also contains economic concentrations of Co. Our investigations aimed to characterise the Co enrichment within the deposit; by understanding the mineralogy we can better design mineral processing to target Co recovery. The laterite is heterogeneous on the mineralogical and lithological scale differing from the classic schematic profiles of nickel laterites, and while there is a clear transition from saprolite to more ferruginous units, the deposit also contains lateral and vertical variations that are associated with both the original intrusive complex and also the nature of fluid flow, redox cycling and fluctuating groundwater tables. The deposit is well described by the following six mineralogical and geochemical units: SAPFE, a clay bearing ferruginous saprolite; SAPSILFE, a silica dominated ferruginous saprolite; SAPMG, a green magnesium rich chlorite dominated saprolite; SAPAL, a white-green high aluminium, low magnesium saprolite; saprock, a serpentine and chlorite dominated saprolite and the serpentinite protolith. Not all of these units are ‘ore bearing’. Ni is concentrated in a range of nickeliferous phyllosilicates (0.1–25 wt%) including serpentines, talc and pimelite, goethite (up to 9 wt%), magnetite (2.8–14 wt%) and Mn oxy-hydroxides (0.35–19 wt%). Lower levels of Ni are present in ilmenites, chromites, chlorite and distinct small horizons of nickeliferous silica (up to 3 wt% Ni). With respect to Co, the only significant chemical correlation is with Mn, and Mn oxy-hydroxides contain up to 14 wt% Co. Cobalt is only present in goethite when Mn is also present, and these goethite grains contain an average of 0.19 wt% Co (up to a maximum of 0.65 wt%). The other main Co bearing minerals are magnetite (0.41–1.89 wt%), chlorite (up to 0.45 wt%) and ilmenite (up to 0.35 wt%). Chemically there are three types of Mn oxy-hydroxide, asbolane, asbolane-lithiophorite intermediates and romanechite. Spatially resolved X-ray absorption spectroscopy analysis suggests that the Co is present primarily as octahedrally bound Co3+ substituted directly into the MnO6 layers of the asbolane-lithiophorite intermediates. However significant levels of Co2+ are evident within the asbolane-lithiophorite intermediates, structurally bound along with Ni in the interlayer between successive MnO6 layers. The laterite microbial community contains prokaryotes and few fungi, with the highest abundance and diversity closest to ground level. Microorganisms capable of metal redox cycling were identified to be present, but microcosm experiments of different horizons within the deposit demonstrated that stimulated biogeochemical cycling did not contribute to Co mobilisation. Correlations between Co and Mn are likely to be a relic of parent rock weathering rather than due to biogeochemical processes; a conclusion that agrees well with the mineralogical associations.
|
Oct 2022
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[19081]
Open Access
Abstract: The protective carapace of Skogsbergia lerneri, a marine ostracod, is scratch-resistant and transparent. The compositional and structural organisation of the carapace that underlies these properties is unknown. In this study, we aimed to quantify and determine the distribution of chemical elements and chitin within the carapace of adult ostracods, as well as at different stages of ostracod development, to gain insight into its composition. Elemental analyses included X-ray absorption near-edge structure, X-ray fluorescence and X-ray diffraction. Nonlinear microscopy and spectral imaging were performed to determine chitin distribution within the carapace. High levels of calcium (20.3%) and substantial levels of magnesium (1.89%) were identified throughout development. Amorphous calcium carbonate (ACC) was detected in carapaces of all developmental stages, with the polymorph, aragonite, identified in A-1 and adult carapaces. Novel chitin-derived second harmonic generation signals (430/5 nm) were detected. Quantification of relative chitin content within the developing and adult carapaces identified negligible differences in chitin content between developmental stages and adult carapaces, except for the lower chitin contribution in A-2 (66.8 ± 7.6%) compared to A-5 (85.5 ± 10%) (p = 0.03). Skogsbergia lerneri carapace calcium carbonate composition was distinct to other myodocopid ostracods. These calcium polymorphs and ACC are described in other biological transparent materials, and with the consistent chitin distribution throughout S. lerneri development, may imply a biological adaptation to preserve carapace physical properties. Realisation of S. lerneri carapace synthesis and structural organisation will enable exploitation to manufacture biomaterials and biomimetics with huge potential in industrial and military applications.
|
Jun 2022
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Andree
Iemhoff
,
Maurice
Vennewald
,
Jens
Artz
,
Chalachew
Mebrahtu
,
Alexander
Meledin
,
Thomas E.
Weirich
,
Heinrich
Hartmann
,
Astrid
Besmehn
,
Matteo
Aramini
,
Federica
Venturini
,
Fred
Mosselmans
,
Georg
Held
,
Rosa
Arrigo
,
Regina
Palkovits
Diamond Proposal Number(s):
[26053, 26030]
Abstract: Stabilization of single metal atoms is a persistent challenge in heterogeneous catalysis. Especially supported late transitions metals are prone to undergo agglomeration to nanoparticles under reducing conditions. In this study, nitrogen-rich covalent triazine frameworks (CTFs) are used to immobilize iridium complexes. Upon reduction at 400°C, immobilized Ir(acac)(COD) on CTF does not form nanoparticles but transforms into a highly active Ir single atom catalyst. The resulting catalyst systems outperforms both the immobilized complex and supported nanoparticles in the dehydrogenation of formic acid as probe reaction. This superior performance could be traced back to decisive changes of the coordination geometry positively influencing activity, selectivity and stability. Spectroscopic analysis reveals an increase of electron density on the cationic iridium site by donation from the CTF macroligand after removal of the organic ligand sphere from the Ir(acac)(COD) precursor complex upon reductive treatment. This work demonstrates the ability of nitrogen moieties to stabilize molecular metal species against agglomeration and opens avenues for catalysts design using isolated sites in high-temperature applications under reducing atmosphere.
|
Mar 2022
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[21441, 18594]
Abstract: Molybdenum (Mo) is a key trace element and a contaminant in many environments including mine tailings and acid mine drainage systems. Under oxic conditions Mo exists in a number of forms, including mono-molybdate (Mo(VI)O42-) and various poly-molybdate species (e.g. Mo(VI)7O246-) depending on the geochemical conditions (e.g. pH). The mobility and bioavailability of Mo is often controlled by sorption to mineral surfaces, including iron (oxyhydr)oxides e.g. hematite (Fe2O3). This study uses adsorption isotherms, PHREEQC geochemical modelling, Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and X-ray Absorption Spectroscopy (XAS) to holistically characterise the molecular scale adsorption of molybdate to hematite as a function of pH (3-12) and Mo(VI) concentration (0.01 ×10-4 - 2 ×10-3 M). PHREEQC and ATR-FTIR indicated both pH and Mo concentration are important variables when forming mono- vs. poly- molybdate and suggest low pH (≤ 4) and high Mo(VI) concentration (≥ 5 ×10-4 M) contribute to the formation of poly-molybdate (heptamolybdate Mo7O246-). XAS found Mo adsorbed to hematite via an inner-sphere corner-sharing bidentate binuclear complex with an octahedral mono-molybdate structure at a Mo concentration of 0.6 ×10-4 M across the pH range, and at a Mo(VI) concentration of 5 ×10-4 M and pH over 5. This is the first direct observation of octahedrally coordinated Mo(VI) adsorption species on hematite, and this information has broad implications for the mobility and transport of Mo as a contaminant in the environment.
|
Feb 2022
|
|