B18-Core EXAFS
I18-Microfocus Spectroscopy
|
Eitaro
Kurihara
,
Masato
Takehara
,
Mizuki
Suetake
,
Ryohei
Ikehara
,
Tatsuki
Komiya
,
Kazuya
Morooka
,
Ryu
Takami
,
Shinya
Yamasaki
,
Toshihiko
Ohnuki
,
Kenji
Horie
,
Mami
Takehara
,
Gareth T. W.
Law
,
William
Bower
,
J. Frederick W.
Mosselmans
,
Peter
Warnicke
,
Bernd
Grambow
,
Rodney C.
Ewing
,
Satoshi
Utsunomiya
Diamond Proposal Number(s):
[21211]
Abstract: Traces of Pu have been detected in material released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March of 2011; however, to date the physical and chemical form of the Pu have remained unknown. Here we report the discovery of particulate Pu associated with cesium-rich microparticles (CsMPs) that formed in and were released from the reactors during the FDNPP meltdowns. The Cs-pollucite-based CsMP contained discrete U(IV)O2 nanoparticles, <~10 nm, one of which is enriched in Pu adjacent to fragments of Zr-cladding. The isotope ratios, 235U/238U, 240Pu/239Pu, and 242Pu/239Pu, of the CsMPs were determined to be ~0.0193, ~0.347, and ~0.065, respectively, which are consistent with the calculated isotopic ratios of irradiated-fuel fragments. Thus, considering the regional distribution of CsMPs, the long-distance dispersion of Pu from FNDPP is attributed to the transport by CsMPs that have incorporated nanoscale fuel fragments prior to their dispersion up to 230 km away from the Fukushima Daiichi reactor site.
|
Nov 2020
|
|
I10-Beamline for Advanced Dichroism
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Myron S.
Huzan
,
Manuel
Fix
,
Matteo
Aramini
,
Peter
Bencok
,
J. Frederick W.
Mosselmans
,
Shusaku
Hayama
,
Franziska A.
Breitner
,
Leland B.
Gee
,
Charles J.
Titus
,
Marie-anne
Arrio
,
Anton
Jesche
,
Michael L.
Baker
Diamond Proposal Number(s):
[21117, 23982]
Open Access
Abstract: Large single-ion magnetic anisotropy is observed in lithium nitride doped with iron. The iron sites are two-coordinate, putting iron doped lithium nitride amongst a growing number of two coordinate transition metal single-ion magnets (SIMs). Uniquely, the relaxation times to magnetisation reversal are over two orders of magnitude longer in iron doped lithium nitride than other 3d-metal SIMs, and comparable with high-performance lanthanide-based SIMs. To understand the origin of these enhanced magnetic properties a detailed characterisation of electronic structure is presented. Access to dopant electronic structure calls for atomic specific techniques, hence a combination of detailed single-crystal X-ray absorption and emission spectroscopies are applied. Together K-edge, L2,3-edge and Kβ X-ray spectroscopies probe local geometry and electronic structure, identifying iron doped lithium nitride to be a prototype, solid-state SIM, clean of stoichiometric vacancies where Fe lattice sites are geometrically equivalent. Extended X-ray absorption fine structure and angular dependent single-crystal X-ray absorption near edge spectroscopy measurements determine FeI dopant ions to be linearly coordinated, occupying a D6h symmetry pocket. The dopant engages in strong 3dπ-bonding, resulting in an exceptionally short Fe–N bond length (1.873(7) Å) and rigorous linearity. It is proposed that this structure protects dopant sites from Renner–Teller vibronic coupling and pseudo Jahn–Teller distortions, enhancing magnetic properties with respect to molecular-based linear complexes. The Fe ligand field is quantified by L2,3-edge XAS from which the energy reduction of 3dz2 due to strong 4s mixing is deduced. Quantification of magnetic anisotropy barriers in low concentration dopant sites is inhibited by many established methods, including far-infrared and neutron scattering. We deduce variable temperature L3-edge XAS can be applied to quantify the J = 7/2 magnetic anisotropy barrier, 34.80 meV (∼280 cm−1), that corresponds with Orbach relaxation via the first excited, MJ = ±5/2 doublet. The results demonstrate that dopant sites within solid-state host lattices could offer a viable alternative to rare-earth bulk magnets and high-performance SIMs, where the host matrix can be tailored to impose high symmetry and control lattice induced relaxation effects.
|
Oct 2020
|
|
I18-Microfocus Spectroscopy
|
Antonios
Vamvakeros
,
Dorota
Matras
,
Simon D. M.
Jacques
,
Marco
Di Michiel
,
Stephen W. T.
Price
,
Pierre
Senecal
,
Miren
Agote Aran
,
Vesna
Middelkoop
,
Gavin B. G.
Stenning
,
J. Frederick W.
Mosselmans
,
Ilyas Z.
Ismagilov
,
Andrew M.
Beale
Diamond Proposal Number(s):
[14525]
Abstract: In this work, we present the results from multi-length-scale studies of a Mn-Na-W/SiO2 and a La-promoted Mn-Na-W/SiO2 catalyst during the oxidative coupling of methane reaction. The catalysts were investigated from the reactor level (mm scale) down to the single catalyst particle level (μm scale) with different synchrotron X-ray chemical computed tomography techniques (multi-modal chemical CT experiments). These operando spatially-resolved studies performed with XRD-CT (catalytic reactor) and multi-modal μ-XRF/XRD/absorption CT (single catalyst particle) revealed the multiple roles of the La promoter and how it provides the enhancement in catalyst performance. It is also shown that non-crystalline Mn species are part of the active catalyst component rather than crystalline Mn2O3/Mn7SiO12 or MnWO4.
|
Jun 2020
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[10104]
Abstract: Determining the nature, evolution, and impact of acid‐generating sulfur deposits in the Mary Rose wooden hull is crucial for protecting Henry VIII's famous warship for generations to come. Here, a comprehensive X‐ray absorption near‐edge spectroscopy (XANES) and X‐ray fluorescence (XRF) study sheds vital light on the evolution of complex sulfur‐based compounds lodged in Mary Rose timbers as a function of drying time. Combining insights from infrared spectroscopy correlates the presence of oxidized sulfur species with increased wood degradation via the loss of major wood components (holocellulose). Intriguingly, zinc is found to co‐exist with iron and sulfur in the most degraded wood regions, indicating its potential contributing role to wood degradation. This study provides crucial information on the degradation processes and resulting products within the wood, which can be used to develop remediation strategies to save the Mary Rose.
|
May 2020
|
|
B18-Core EXAFS
I18-Microfocus Spectroscopy
|
Adam J.
Fuller
,
Peter
Leary
,
Neil D.
Gray
,
Helena S.
Davies
,
J. Frederick W.
Mosselmans
,
Filipa
Cox
,
Clare H.
Robinson
,
Jon K.
Pittman
,
Clare M.
Mccann
,
Michael
Muir
,
Margaret C.
Graham
,
Satoshi
Utsunomiya
,
William R.
Bower
,
Katherine
Morris
,
Samuel
Shaw
,
Pieter
Bots
,
Francis R.
Livens
,
Gareth T. W.
Law
Diamond Proposal Number(s):
[10163, 12767, 12477]
Open Access
Abstract: Understanding the long-term fate, stability, and bioavailability of uranium (U) in the environment is important for the management of nuclear legacy sites and radioactive wastes. Analysis of U behavior at natural analogue sites permits evaluation of U biogeochemistry under conditions more representative of long-term equilibrium. Here, we have used bulk geochemical and microbial community analysis of soils, coupled with X-ray absorption spectroscopy and μ-focus X-ray fluorescence mapping, to gain a mechanistic understanding of the fate of U transported into an organic-rich soil from a pitchblende vein at the UK Needle's Eye Natural Analogue site. U is highly enriched in the Needle's Eye soils (∼1600 mg kg−1). We show that this enrichment is largely controlled by U(VI) complexation with soil organic matter and not U(VI) bioreduction. Instead, organic-associated U(VI) seems to remain stable under microbially-mediated Fe(III)-reducing conditions. U(IV) (as non-crystalline U(IV)) was only observed at greater depths at the site (>25 cm); the soil here was comparatively mineral-rich, organic-poor, and sulfate-reducing/methanogenic. Furthermore, nanocrystalline UO2, an alternative product of U(VI) reduction in soils, was not observed at the site, and U did not appear to be associated with Fe-bearing minerals. Organic-rich soils appear to have the potential to impede U groundwater transport, irrespective of ambient redox conditions.
|
Apr 2020
|
|
B18-Core EXAFS
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Luke T.
Townsend
,
Samuel
Shaw
,
Naomi E. R.
Ofili
,
Nikolas
Kaltsoyannis
,
Alex S.
Walton
,
J. Frederick W.
Mosselmans
,
Thomas S.
Neil
,
Jonathan R.
Lloyd
,
Sarah
Heath
,
Rosemary
Hibberd
,
Katherine
Morris
Diamond Proposal Number(s):
[13559, 17376, 17243]
Open Access
Abstract: Uranium is a risk-driving radionuclide in both radioactive waste disposal and contaminated land scenarios. In these environments, a range of biogeochemical processes can occur, including sulfate reduction, which can induce sulfidation of iron (oxyhydr)oxide mineral phases. During sulfidation, labile U(VI) is known to reduce to relatively immobile U(IV); however, the detailed mechanisms of the changes in U speciation during these biogeochemical reactions are poorly constrained. Here, we performed highly controlled sulfidation experiments at pH 7 and pH 9.5 on U(VI) adsorbed to ferrihydrite and investigated the system using geochemical analyses, X-ray absorption spectroscopy (XAS), and computational modeling. Analysis of the XAS data indicated the formation of a novel, transient U(VI)–persulfide complex as an intermediate species during the sulfidation reaction, concomitant with the transient release of uranium to the solution. Extended X-ray absorption fine structure (EXAFS) modeling showed that a persulfide ligand was coordinated in the equatorial plane of the uranyl moiety, and formation of this species was supported by computational modeling. The final speciation of U was nanoparticulate U(IV) uraninite, and this phase was evident at 2 days at pH 7 and 1 year at pH 9.5. Our identification of a new, labile U(VI)-persulfide species under environmentally relevant conditions may have implications for U mobility in sulfidic environments pertinent to radioactive waste disposal and contaminated land scenarios.
|
Dec 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[15971, 17888]
Abstract: Rhizosphere soil has distinct physical and chemical properties from bulk soil. However, besides root induced physical changes, chemical changes have not been extensively measured in situ on the pore scale.
In this study we couple structural information, previously obtained using synchrotron X‐ray computed tomography (XCT), with synchrotron X‐ray Fluorescence (SR‐XRF) microscopy and X‐ray Absorption Near‐Edge Structure (XANES) to unravel chemical changes induced by plant roots.
Our results suggest that iron (Fe) and sulfur (S) increase notably in the direct vicinity of the root via solubilization and microbial activity. XANES further shows that Fe is slightly reduced, S is increasingly transformed into sulfate (SO42‐) and that phosphorus (P) is increasable adsorbed to humic substances in this enrichment zone. In addition, the ferrihydrite fraction decreases drastically suggesting the preferential dissolution and the formation of more stable Fe‐oxides. Additionally, the increased transformation of organic S to sulfate indicates that the microbial activity in this zone is increased. These changes in soil chemistry correspond to the soil compaction zone as previously measured via X‐ray CT.
The fact that these changes are co‐located near the root and the compaction zone suggests that decreased permeability due to soil structural changes acts as a barrier creating a zone with increased rhizosphere chemical interactions via surface mediated processes, microbial activity and acidification.
|
Oct 2019
|
|
B18-Core EXAFS
|
Kurt F.
Smith
,
Katherine
Morris
,
Gareth
Law
,
Ellen H.
Winstanley
,
Francis R.
Livens
,
Joshua S.
Weatherill
,
Liam G.
Abrahamsen-mills
,
Nicholas D.
Bryan
,
J. Frederick W.
Mosselmans
,
Giannantonio
Cibin
,
Stephen
Parry
,
Richard
Blackham
,
Kathleen A.
Law
,
Samuel
Shaw
Diamond Proposal Number(s):
[17243]
Abstract: Understanding interactions between iron (oxyhydr)oxide nanoparticles and plutonium is essential to underpin technology to treat radioactive effluents, in clean-up of land contaminated with radionuclides, and to ensure the safe disposal of radioactive wastes. These interactions include a range of adsorption, precipitation and incorporation processes. Here, we explore the mechanisms of plutonium sequestration during ferrihydrite precipitation from an acidic solution. The initial 1 M HNO3 solution with Fe(III)(aq) and 242Pu(IV)(aq) underwent controlled hydrolysis via the addition of NaOH to pH 9. The majority of Fe(III)(aq) and Pu(IV)(aq) was removed from solution between pH 2 and 3 during ferrihydrite formation. Analysis of Pu-ferrihydrite by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy showed that Pu(IV) formed an inner sphere tetradentate complex on the ferrihydrite surface, with minor amounts of PuO2 present. Best fits to the EXAFS data collected from Pu-ferrihydrite samples aged for two- and six- months showed no statistically significant change in the Pu(IV)-Fe oxyhydroxide surface complex despite the ferrihydrite undergoing extensive recrystallisation to hematite. This suggests the Pu remains strongly sorbed to the iron (oxyhydr)oxide surface and could be retained over extended time periods.
|
Sep 2019
|
|
B18-Core EXAFS
I14-Hard X-ray Nanoprobe
I18-Microfocus Spectroscopy
|
William R.
Bower
,
Katherine
Morris
,
Francis R.
Livens
,
J. Frederick W.
Mosselmans
,
Connaugh M.
Fallon
,
Adam J.
Fuller
,
Louise S.
Natrajan
,
Christopher
Boothman
,
Jonathan R.
Lloyd
,
Satoshi
Utsunomiya
,
Daniel
Grolimund
,
Dario
Ferreira Sanchez
,
Tom
Jilbert
,
Julia E.
Parker
,
Thomas S.
Neill
,
Gareth T. W.
Law
Diamond Proposal Number(s):
[15085, 17270, 13559, 18053]
Abstract: Metaschoepite is commonly found in U contaminated environments and metaschoepite-bearing wastes may be managed via shallow or deep disposal. Understanding metaschoepite dissolution and tracking the fate of any liberated U is thus important. Here, discrete horizons of metaschoepite (UO3●nH2O) particles were emplaced in flowing sediment/groundwater columns representative of the UK Sellafield site. The column systems either remained oxic or became anoxic due to electron donor additions, and the columns were sacrificed after 6- and 12-months for analysis. Solution chemistry, extractions, and bulk and micro-/nano-focus X-ray spectroscopies were used to track changes in U distribution and behavior. In the oxic columns, U migration was extensive, with UO22+ identified in effluents after 6-months of reaction using fluorescence spectroscopy. Unusually, in the electron-donor amended columns, during microbially-mediated sulfate reduction, significant amounts of UO2-like colloids (>60% of the added U) were found in the effluents using TEM. XAS analysis of the U remaining associated with the reduced sediments confirmed the presence of trace U(VI), non-crystalline U(IV), and biogenic UO2, with UO2 becoming more dominant with time. This study highlights the potential for U(IV) colloid production from U(VI) solids under reducing conditions and the complexity of U biogeochemistry in dynamic systems.
|
Jul 2019
|
|
I13-1-Coherence
I18-Microfocus Spectroscopy
|
Peter G.
Martin
,
Marion
Louvel
,
Silvia
Cipiccia
,
Christopher P.
Jones
,
Darren J.
Batey
,
Keith R.
Hallam
,
Ian A. X.
Yang
,
Yukihiko
Satou
,
Christoph
Rau
,
J. Fred W.
Mosselmans
,
David
Richards
,
Thomas B.
Scott
Diamond Proposal Number(s):
[16701, 16702, 18186]
Open Access
Abstract: Here we report the results of multiple analytical techniques on sub-mm particulate material derived from Unit 1 of the Fukushima Daiichi Nuclear Power Plant to provide a better understanding of the events that occurred and the environmental legacy. Through combined x-ray fluorescence and absorption contrast micro-focused x-ray tomography, entrapped U particulate are observed to exist around the exterior circumference of the highly porous Si-based particle. Further synchrotron radiation analysis of a number of these entrapped particles shows them to exist as UO2—identical to reactor fuel, with confirmation of their nuclear origin shown via mass spectrometry analysis. While unlikely to represent an environmental or health hazard, such assertions would likely change should break-up of the Si-containing bulk particle occur. However, more important to the long-term decommissioning of the reactors at the FDNPP (and environmental clean-upon), is the knowledge that core integrity of reactor Unit 1 was compromised with nuclear material existing outside of the reactors primary containment.
|
Jun 2019
|
|