I19-Small Molecule Single Crystal Diffraction
|
Cara J.
Hawkins
,
Jon A.
Newnham
,
Batoul
Almoussawi
,
Nataliya L.
Gulay
,
Samuel L.
Goodwin
,
Marco
Zanella
,
Troy D.
Manning
,
Luke M.
Daniels
,
Matthew S.
Dyer
,
Tim D.
Veal
,
John B.
Claridge
,
Matthew J.
Rosseinsky
Diamond Proposal Number(s):
[30461]
Open Access
Abstract: Mixed anion halide-chalcogenide materials have recently attracted attention for a variety of applications, owing to their desirable optoelectronic properties. We report the synthesis of a previously unreported mixed-metal chalcohalide material, CuBiSeCl2 (Pnma), accessed through a simple, low-temperature solid-state route. The physical structure is characterized through single-crystal X-ray diffraction and reveals significant Cu displacement within the CuSe2Cl4 octahedra. The electronic structure of CuBiSeCl2 is investigated computationally, which indicates highly anisotropic charge carrier effective masses, and by experimental verification using X-ray photoelectron spectroscopy, which reveals a valence band dominated by Cu orbitals. The band gap is measured to be 1.33(2) eV, a suitable value for solar absorption applications. The electronic and thermal properties, including resistivity, Seebeck coefficient, thermal conductivity, and heat capacity, are also measured, and it is found that CuBiSeCl2 exhibits a low room temperature thermal conductivity of 0.27(4) W K–1 m–1, realized through modifications to the phonon landscape through increased bonding anisotropy.
|
Apr 2024
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
I19-Small Molecule Single Crystal Diffraction
|
Matthew A.
Wright
,
T. Wesley
Surta
,
Jae A.
Evans
,
Jungwoo
Lim
,
Hongil
Jo
,
Cara J.
Hawkins
,
Mounib
Bahri
,
Luke M.
Daniels
,
Ruiyong
Chen
,
Marco
Zanella
,
Luciana G.
Chagas
,
James
Cookson
,
Paul
Collier
,
Giannantonio
Cibin
,
Alan V.
Chadwick
,
Matthew S.
Dyer
,
Nigel D.
Browning
,
John B.
Claridge
,
Laurence J.
Hardwick
,
Matthew J.
Rosseinsky
Diamond Proposal Number(s):
[31578]
Open Access
Abstract: Magnesium batteries attract interest as alternative energy-storage devices because of elemental abundance and potential for high energy density. Development is limited by the absence of suitable cathodes, associated with poor diffusion kinetics resulting from strong interactions between Mg2+ and the host structure. V2PS10 is reported as a positive electrode material for rechargeable magnesium batteries. Cyclable capacity of 100 mAh g-1 is achieved with fast Mg2+ diffusion of 7.2[[EQUATION]]10-11-4[[EQUATION]]10-14 cm2s-1. The fast insertion mechanism results from combined cationic redox on the V site and anionic redox on the (S2)2- site; enabled by reversible cleavage of S–S bonds, identified by X-ray photoelectron and X-ray absorption spectroscopy. Detailed structural characterisation with maximum entropy method analysis, supported by density functional theory calculations and projected density of states analysis, reveals that the sulphur species involved in anion redox are not connected to the transition metal centres, spatially separating the two redox processes. This facilitates fast and reversible Mg insertion in which the nature of the redox process depends on the cation insertion site, creating a synergy between the occupancy of specific Mg sites and the location of the electrons transferred.
|
Mar 2024
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[30461]
Open Access
Abstract: A 2×2×1 superstructure of the P63/mmc NiAs structure is reported in which kagome nets are stabilized in the octahedral transition metal layers of the compounds Ni0.7Pd0.2Bi, Ni0.6Pt0.4Bi, and Mn0.99Pd0.01Bi. The ordered vacancies that yield the true hexagonal kagome motif lead to filling of trigonal bipyramidal interstitial sites with the transition metal in this family of “kagome-NiAs” type materials. Further ordering of vacancies within these interstitial layers can be compositionally driven to simultaneously yield kagome-connected layers and a net polarization along the c axes in Ni0.9Bi and Ni0.79Pd0.08Bi, which adopt Fmm2 symmetry. The polar and non-polar materials exhibit different electronic transport behaviour, reflecting the tuneability of both structure and properties within the NiAs-type bismuthide materials family.
|
Mar 2024
|
|
I11-High Resolution Powder Diffraction
I19-Small Molecule Single Crystal Diffraction
|
Guopeng
Han
,
Andrij
Vasylenko
,
Luke M.
Daniels
,
Chris M.
Collins
,
Lucia
Corti
,
Ruiyong
Chen
,
Hongjun
Niu
,
Troy D.
Manning
,
Dmytro
Antypov
,
Matthew S.
Dyer
,
Jungwoo
Lim
,
Marco
Zanella
,
Manel
Sonni
,
Mounib
Bahri
,
Hongil
Jo
,
Yun
Dang
,
Craig M.
Robertson
,
Frédéric
Blanc
,
Laurence J.
Hardwick
,
Nigel D.
Browning
,
John B.
Claridge
,
Matthew J.
Rosseinsky
Diamond Proposal Number(s):
[30461, 31578]
Abstract: Fast cation transport in solids underpins energy storage. Materials design has focused on structures that can define transport pathways with minimal cation coordination change, restricting attention to a small part of chemical space. Motivated by the greater structural diversity of binary intermetallics than that of the metallic elements, we used two anions to build a pathway for three-dimensional superionic lithium ion conductivity that exploits multiple cation coordination environments. Li7Si2S7I is a pure lithium ion conductor created by an ordering of sulphide and iodide that combines elements of hexagonal and cubic close-packing analogously to the structure of NiZr. The resulting diverse network of lithium positions with distinct geometries and anion coordination chemistries affords low barriers to transport, opening a large structural space for high cation conductivity.
|
Feb 2024
|
|
I11-High Resolution Powder Diffraction
I19-Small Molecule Single Crystal Diffraction
|
Alexandra
Morscher
,
Benjamin B.
Duff
,
Guopeng
Han
,
Luke M.
Daniels
,
Yun
Dang
,
Marco
Zanella
,
Manel
Sonni
,
Ahmad
Malik
,
Matthew S.
Dyer
,
Ruiyong
Chen
,
Frédéric
Blanc
,
John B.
Claridge
,
Matthew J.
Rosseinsky
Diamond Proposal Number(s):
[23666, 21726]
Open Access
Abstract: Argyrodite is a key structure type for ion-transporting materials. Oxide argyrodites are largely unexplored despite sulfide argyrodites being a leading family of solid-state lithium-ion conductors, in which the control of lithium distribution over a wide range of available sites strongly influences the conductivity. We present a new cubic Li-rich (>6 Li+ per formula unit) oxide argyrodite Li7SiO5Cl that crystallizes with an ordered cubic (P213) structure at room temperature, undergoing a transition at 473 K to a Li+ site disordered F4̅3m structure, consistent with the symmetry adopted by superionic sulfide argyrodites. Four different Li+ sites are occupied in Li7SiO5Cl (T5, T5a, T3, and T4), the combination of which is previously unreported for Li-containing argyrodites. The disordered F4̅3m structure is stabilized to room temperature via substitution of Si4+ with P5+ in Li6+xP1–xSixO5Cl (0.3 < x < 0.85) solid solution. The resulting delocalization of Li+ sites leads to a maximum ionic conductivity of 1.82(1) × 10–6 S cm–1 at x = 0.75, which is 3 orders of magnitude higher than the conductivities reported previously for oxide argyrodites. The variation of ionic conductivity with composition in Li6+xP1–xSixO5Cl is directly connected to structural changes occurring within the Li+ sublattice. These materials present superior atmospheric stability over analogous sulfide argyrodites and are stable against Li metal. The ability to control the ionic conductivity through structure and composition emphasizes the advances that can be made with further research in the open field of oxide argyrodites.
|
Nov 2022
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[23666]
Open Access
Abstract: The synthesis, structure, and properties of the three-anion superlattice materials Bi4O4SeBr2 and Bi6O6Se2Cl2 are reported. These materials crystallise in structures that form part of a homologous series of compounds comprised of stackings of BiOCl- and Bi2O2Se-like units. Bi4O4SeBr2 is analogous to Bi4O4Se2Cl2, whereas Bi6O6Se2Cl2 contains an additional Bi2O2Se layer that produces off-centred anions. The band gaps of both materials are indirect, with Eg = 1.15(5) eV, and the materials behave as doped semiconductors with very low thermal conductivities. These materials expand the synthetic scope of multiple anion superlattice materials and, with optimisation, may also be platforms for future thermoelectric materials.
|
May 2022
|
|
I11-High Resolution Powder Diffraction
|
Bernhard T.
Leube
,
Christopher M.
Collins
,
Luke M.
Daniels
,
Benjamin B.
Duff
,
Yun
Dang
,
Ruiyong
Chen
,
Michael W.
Gaultois
,
Troy D.
Manning
,
Frédéric
Blanc
,
Matthew S.
Dyer
,
John B.
Claridge
,
Matthew J.
Rosseinsky
Diamond Proposal Number(s):
[17193]
Open Access
Abstract: A tetragonal argyrodite with >7 mobile cations, Li7Zn0.5SiS6, is experimentally realized for the first time through solid state synthesis and exploration of the Li–Zn–Si–S phase diagram. The crystal structure of Li7Zn0.5SiS6 was solved ab initio from high-resolution X-ray and neutron powder diffraction data and supported by solid-state NMR. Li7Zn0.5SiS6 adopts a tetragonal I4 structure at room temperature with ordered Li and Zn positions and undergoes a transition above 411.1 K to a higher symmetry disordered F43m structure more typical of Li-containing argyrodites. Simultaneous occupation of four types of Li site (T5, T5a, T2, T4) at high temperature and five types of Li site (T5, T2, T4, T1, and a new trigonal planar T2a position) at room temperature is observed. This combination of sites forms interconnected Li pathways driven by the incorporation of Zn2+ into the Li sublattice and enables a range of possible jump processes. Zn2+ occupies the 48h T5 site in the high-temperature F43m structure, and a unique ordering pattern emerges in which only a subset of these T5 sites are occupied at room temperature in I4 Li7Zn0.5SiS6. The ionic conductivity, examined via AC impedance spectroscopy and VT-NMR, is 1.0(2) × 10–7 S cm–1 at room temperature and 4.3(4) × 10–4 S cm–1 at 503 K. The transition between the ordered I4 and disordered F43m structures is associated with a dramatic decrease in activation energy to 0.34(1) eV above 411 K. The incorporation of a small amount of Zn2+ exercises dramatic control of Li order in Li7Zn0.5SiS6 yielding a previously unseen distribution of Li sites, expanding our understanding of structure–property relationships in argyrodite materials.
|
Apr 2022
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[23666, 23167]
Open Access
Abstract: Li-rich rocksalt oxides are promising candidates as high-energy density cathode materials for next-generation Li-ion batteries because they present extremely diverse structures and compositions. Most reported materials in this family contain as many cations as anions, a characteristic of the ideal cubic closed-packed rocksalt composition. In this work, a new rocksalt-derived structure type is stabilized by selecting divalent Cu and pentavalent Sb cations to favor the formation of oxygen vacancies during synthesis. The structure and composition of the oxygen-deficient Li4CuSbO5.5□0.5 phase is characterized by combining X-ray and neutron diffraction, ICP-OES, XAS, and magnetometry measurements. The ordering of cations and oxygen vacancies is discussed in comparison with the related Li2CuO2□1 and Li5SbO5□1 phases. The electrochemical properties of this material are presented, with only 0.55 Li+ extracted upon oxidation, corresponding to a limited utilization of cationic and/or anionic redox, whereas more than 2 Li+ ions can be reversibly inserted upon reduction to 1 V vs Li+/Li, a large capacity attributed to a conversion reaction and the reduction of Cu2+ to Cu0. Control of the formation of oxygen vacancies in Li-rich rocksalt oxides by selecting appropriate cations and synthesis conditions affords a new route for tuning the electrochemical properties of cathode materials for Li-ion batteries. Furthermore, the development of material models of the required level of detail to predict phase diagrams and electrochemical properties, including oxygen release in Li-rich rocksalt oxides, still relies on the accurate prediction of crystal structures. Experimental identification of new accessible structure types stabilized by oxygen vacancies represents a valuable step forward in the development of predictive models.
|
Dec 2021
|
|
I11-High Resolution Powder Diffraction
|
Harry C.
Sansom
,
Leonardo R. V.
Buizza
,
Marco
Zanella
,
James T.
Gibbon
,
Michael
Pitcher
,
Matthew S.
Dyer
,
Troy D.
Manning
,
Vinod R.
Dhanak
,
Laura M.
Herz
,
Henry J.
Snaith
,
John B.
Claridge
,
Matthew J.
Rosseinsky
Open Access
Abstract: A newly reported compound, CuAgBiI5, is synthesized as powder, crystals, and thin films. The structure consists of a 3D octahedral Ag+/Bi3+ network as in spinel, but occupancy of the tetrahedral interstitials by Cu+ differs from those in spinel. The 3D octahedral network of CuAgBiI5 allows us to identify a relationship between octahedral site occupancy (composition) and octahedral motif (structure) across the whole CuI–AgI–BiI3 phase field, giving the ability to chemically control structural dimensionality. To investigate composition–structure–property relationships, we compare the basic optoelectronic properties of CuAgBiI5 with those of Cu2AgBiI6 (which has a 2D octahedral network) and reveal a surprisingly low sensitivity to the dimensionality of the octahedral network. The absorption onset of CuAgBiI5 (2.02 eV) barely changes compared with that of Cu2AgBiI6 (2.06 eV) indicating no obvious signs of an increase in charge confinement. Such behavior contrasts with that for lead halide perovskites which show clear confinement effects upon lowering dimensionality of the octahedral network from 3D to 2D. Changes in photoluminescence spectra and lifetimes between the two compounds mostly derive from the difference in extrinsic defect densities rather than intrinsic effects. While both materials show good stability, bulk CuAgBiI5 powder samples are found to be more sensitive to degradation under solar irradiation compared to Cu2AgBiI6.
|
Nov 2021
|
|
I11-High Resolution Powder Diffraction
|
Open Access
Abstract: Mixed anion materials and anion doping are very promising strategies to improve solid-state electrolyte properties by enabling an optimized balance between good electrochemical stability and high ionic conductivity. In this work, we present the discovery of a novel lithium aluminum sulfide–chloride phase, obtained by substitution of chloride for sulfur in Li3AlS3 and Li5AlS4 materials. The structure is strongly affected by the presence of chloride anions on the sulfur site, as the substitution was shown to be directly responsible for the stabilization of a higher symmetry phase presenting a large degree of cationic site disorder, as well as disordered octahedral lithium vacancies. The effect of disorder on the lithium conductivity properties was assessed by a combined experimental–theoretical approach. In particular, the conductivity is increased by a factor 103 compared to the pure sulfide phase. Although it remains moderate (10–6 S·cm–1), ab initio molecular dynamics and maximum entropy (applied to neutron diffraction data) methods show that disorder leads to a 3D diffusion pathway, where Li atoms move thanks to a concerted mechanism. An understanding of the structure–property relationships is developed to determine the limiting factor governing lithium ion conductivity. This analysis, added to the strong step forward obtained in the determination of the dimensionality of diffusion, paves the way for accessing even higher conductivity in materials comprising an hcp anion arrangement.
|
Nov 2021
|
|