B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Zoe N.
Taylor
,
Arnaud J.
Perez
,
Jose A.
Coca-Clemente
,
Filipe
Braga
,
Nicholas E.
Drewett
,
Michael J.
Pitcher
,
William J.
Thomas
,
Matthew S.
Dyer
,
Christopher
Collins
,
Marco
Zanella
,
Timothy
Johnson
,
Sarah
Day
,
Chiu
Tang
,
Vinod R
Dhanak
,
John B.
Claridge
,
Laurence J.
Hardwick
,
Matthew J.
Rosseinsky
Abstract: Multinary lithium oxides with the rock salt structure are of technological importance as cathode materials in rechargeable lithium ion batteries. Current state of the art cathodes such as LiNi1/3Mn1/3Co1/3O2 rely on redox cycling of earth-abundant transition metal cations to provide charge capacity. Recently, the possibility of using the oxide anion as a redox center in Li-rich rock salt oxides has been established as a new paradigm in the design of cathode materials with enhanced capacities (> 200 mAh/g). To increase the lithium content and access electrons from oxygen-derived states, these materials typically require transition metals in high oxidation states, which can be easily achieved using d0 cations. However, Li-rich rocksalt oxides with high valent d0 cations such as Nb5+ and Mo6+ show strikingly high voltage hysteresis between charge and discharge, the origin of which is uninvestigated. In this work, we study a series of Li-rich compounds, Li4+xNi1-xWO6 (0 ≤ x ≤ 0.25), adopting two new and distinct cation-ordered variants of the rock salt structure. The phase Li4.15Ni0.85WO6 (x = 0.15) has a large reversible capacity of 200 mAh/g, without accessing the Ni3+/Ni4+ redox couple, implying that over two-thirds of the capacity is due to anionic redox, with good cyclability. The presence of the 5d0 W6+ cation affords extensive (> 2 V) voltage hysteresis associated with the anionic redox. We present experimental evidence for the formation of strongly stabilized localized O-O single bonds that explain the energy penalty required to reduce the material upon discharge. The high valent d0 cation associates localized anion-anion bonding with the anion redox capacity.
|
Apr 2019
|
|
I11-High Resolution Powder Diffraction
I19-Small Molecule Single Crystal Diffraction
|
Abstract: Metal–organic frameworks (MOFs) are crystalline synthetic porous materials formed by binding organic linkers to metal nodes: they can be either rigid or flexible. Zeolites and rigid MOFs have widespread applications in sorption, separation and catalysis that arise from their ability to control the arrangement and chemistry of guest molecules in their pores via the shape and functionality of their internal surface, defined by their chemistry and structure. Their structures correspond to an energy landscape with a single, albeit highly functional, energy minimum. By contrast, proteins function by navigating between multiple metastable structures using bond rotations of the polypeptide, where each structure lies in one of the minima of a conformational energy landscape and can be selected according to the chemistry of the molecules that interact with the protein. These structural changes are realized through the mechanisms of conformational selection (where a higher-energy minimum characteristic of the protein is stabilized by small-molecule binding) and induced fit (where a small molecule imposes a structure on the protein that is not a minimum in the absence of that molecule). Here we show that rotation about covalent bonds in a peptide linker can change a flexible MOF to afford nine distinct crystal structures, revealing a conformational energy landscape that is characterized by multiple structural minima. The uptake of small-molecule guests by the MOF can be chemically triggered by inducing peptide conformational change. This change transforms the material from a minimum on the landscape that is inactive for guest sorption to an active one. Chemical control of the conformation of a flexible organic linker offers a route to modifying the pore geometry and internal surface chemistry and thus the function of open-framework materials.
|
Jan 2019
|
|
I19-Small Molecule Single Crystal Diffraction
|
C.
Delacotte
,
G. F. S.
Whitehead
,
M. J.
Pitcher
,
C. M
Robertson
,
P. M.
Sharp
,
M. S.
Dyer
,
Jo.
Alaria
,
J. B.
Claridge
,
G. R.
Darling
,
D. R.
Allan
,
G.
Winter
,
M. J.
Rosseinsky
Diamond Proposal Number(s):
[15777]
Open Access
Abstract: Hexaferrites are an important class of magnetic oxides with applications in data storage and electronics. Their crystal structures are highly modular, consisting of Fe- or Ba-rich close-packed blocks that can be stacked in different sequences to form a multitude of unique structures, producing large anisotropic unit cells with lattice parameters typically >100 Å along the stacking axis. This has limited atomic-resolution structure solutions to relatively simple examples such as Ba2Zn2Fe12O22, whilst longer stacking sequences have been modelled only in terms of block sequences, with no refinement of individual atomic coordinates or occupancies. This paper describes the growth of a series of complex hexaferrite crystals, their atomic-level structure solution by high-resolution synchrotron X-ray diffraction, electron diffraction and imaging methods, and their physical characterization by magnetometry. The structures include a new hexaferrite stacking sequence, with the longest lattice parameter of any hexaferrite with a fully determined structure.
|
Nov 2018
|
|
I11-High Resolution Powder Diffraction
|
Christos A.
Tzitzeklis
,
Jyoti K.
Gupta
,
Matthew S.
Dyer
,
Troy D.
Manning
,
Michael J.
Pitcher
,
Hongjun J.
Niu
,
Stanislav
Savvin
,
Jonathan
Alaria
,
George R.
Darling
,
John B.
Claridge
,
Matthew J.
Rosseinsky
Diamond Proposal Number(s):
[12336]
Abstract: It is challenging to achieve p-type doping of zinc oxides (ZnO), which are of interest as transparent conductors in optoelectronics. A ZnO-related ternary compound, SrZnO2, was investigated as a potential host for p-type conductivity. First-principles investigations were used to select from a range of candidate dopants the substitution of Li+ for Zn2+ as a stable, potentially p-type, doping mechanism in SrZnO2. Subsequently, single-phase bulk samples of a new p-type-doped oxide, SrZn1–xLixO2 (0 < x < 0.06), were prepared. The structural, compositional, and physical properties of both the parent SrZnO2 and SrZn1–xLixO2 were experimentally verified. The band gap of SrZnO2 was calculated using HSE06 at 3.80 eV and experimentally measured at 4.27 eV, which confirmed the optical transparency of the material. Powder X-ray diffraction and inductively coupled plasma analysis were combined to show that single-phase ceramic samples can be accessed in the compositional range x < 0.06. A positive Seebeck coefficient of 353(4) μV K–1 for SrZn1–xLixO2, where x = 0.021, confirmed that the compound is a p-type conductor, which is consistent with the pO2 dependence of the electrical conductivity observed in all SrZn1–xLixO2 samples. The conductivity of SrZn1–xLixO2 is up to 15 times greater than that of undoped SrZnO2 (for x = 0.028 σ = 2.53 μS cm–1 at 600 °C and 1 atm of O2).
|
Sep 2018
|
|
I11-High Resolution Powder Diffraction
|
Quinn D.
Gibson
,
Matthew S.
Dyer
,
Craig
Robertson
,
Charlene
Delacotte
,
Troy D.
Manning
,
Michael J.
Pitcher
,
Luke M.
Daniels
,
Marco
Zanella
,
Jonathan
Alaria
,
John B.
Claridge
,
Matthew
Rosseinsky
Diamond Proposal Number(s):
[17193]
Abstract: Here we report a new layered homologous series (Bi2O2Cu2−δSe2)mδ+(Bi2O2Se1−(m/n)δX (m/n)δ)nδ− (X = Cl, Br), composed of the known structural blocks BiOCuSe and Bi2O2Se. These structures are accessed by combining charge-compensating Cu vacancies and (Cl, Br) for Se substitution, in different layers. These new stacking homologoues have properties markedly different from those of the parent materials, and changing the layer stacking affects the properties including the band gap and thermal conductivity.
|
Sep 2018
|
|
I11-High Resolution Powder Diffraction
|
Bernhard T.
Leube
,
Kenneth K.
Inglis
,
Elliot
Carrington
,
Paul M.
Sharp
,
J. Felix
Shin
,
Alex R.
Neale
,
Troy D.
Manning
,
Michael J.
Pitcher
,
Laurence
Hardwick
,
Matthew S.
Dyer
,
Frédéric
Blanc
,
John B.
Claridge
,
Matthew J.
Rosseinsky
Open Access
Abstract: In order to understand the structural and compositional factors controlling lithium transport in sulfides, we explored the Li5AlS4 – Li4GeS4 phase field for new materials. Both parent compounds are defined structurally by a hexagonal close packed sulfide lattice, where distinct arrangements of tetrahedral metal sites give Li5AlS4 a layered structure and Li4GeS4 a three dimensional structure related to γ-Li3PO4. The combination of the two distinct structural motifs is expected to lead to new structural chemistry. We identified the new crystalline phase Li4.4Al0.4Ge0.6S4, and investigated the structure and Li+ ion dynamics of the family of structurally related materials Li4.4M0.4M’0.6S4 (M = Al3+, Ga3+ and M’= Ge4+, Sn4+). We used neutron diffraction to solve the full structures of the Al-homologues, which adopt a layered close-packed structure with a new arrangement of tetrahedral (M/M’) sites and a novel combination of ordered and disordered lithium vacancies. AC impedance spectroscopy revealed lithium conductivities in the range 3(2) x 10-6 to 4.3(3) x 10-5 S cm-1 at room temperature with activation energies between 0.43(1) and 0.38(1) eV. Electrochemical performance was tested in a plating and stripping experiment against Li metal electrodes and showed good stability of the Li4.4Al0.4Ge0.6S4 phase over 200 hours. A combination of variable temperature 7Li solid state nuclear magnetic resonance spectroscopy and ab initio molecular dynamics calculations on selected phases showed that two dimensional diffusion with a low energy barrier of 0.17 eV is responsible for long-range lithium transport, with diffusion pathways mediated by the disordered vacancies while the ordered vacancies do not contribute to the conductivity. This new structural family of sulfide Li+ ion conductors offers insight into the role of disordered vacancies on Li+ ion conductivity mechanisms in hexagonally close packed sulfides that can inform future materials design.
|
Sep 2018
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[17193]
Open Access
Abstract: By tuning the A site cation size it is possible to control the degree of octahedral distortion and ultimately structural symmetry in the new perovskite solid solution La0.5Na0.5−xKxTiO3, affording a rhombohedral-to-cubic transition as x increases above 0.4. The La3+ and K+ cations are distributed randomly across the A site leading to significant phonon disorder in cubic La0.5K0.5TiO3 (Pm[3 with combining macron]m) which produces a phonon-glass with a thermal conductivity of 2.37(12) W m−1 K−1 at 300 K; a reduction of 75% when compared with isostructural SrTiO3. This simple cation substitution of Sr2+ for La3+ and K+ maintains the flexible structural chemistry of the perovskite structure and two mechanisms of doping for the introduction of electronic charge carriers are explored; A site doping in La1−yKyTiO3 or B site doping in La0.5K0.5Ti1−zNbzO3. The phonon-glass thermal conductivity of La0.5K0.5TiO3 is retained upon doping through both of these mechanisms highlighting how the usually strongly coupled thermal and electronic transport can be minimised by mass disorder in perovskites. Precise control over octahedral distortion in A site doped La1−yKyTiO3, which has rhombohedral (R[3 with combining macron]c) symmetry affords lower band dispersions and increased carrier effective masses over those achieved in B site doped La0.5K0.5Ti1−zNbzO3 which maintains the cubic (Pm[3 with combining macron]m) symmetry of the undoped La0.5K0.5TiO3 parent. The higher Seebeck coefficients of A site doped La1−yKyTiO3 yield larger power factors and lead to increased thermoelectric figures of merit and improved conversion efficiencies compared with the mechanism for B site doping.
|
Jul 2018
|
|
I11-High Resolution Powder Diffraction
I15-Extreme Conditions
|
Diamond Proposal Number(s):
[12336, 9282]
Open Access
Abstract: Covalent organic frameworks (COFs) are network polymers with long-range positional order whose properties can be tuned using the isoreticular chemistry approach. Making COFs from strong bonds is challenging because irreversible rapid formation of the network produces amorphous materials with locked-in disorder. Reversibility in bond formation is essential to generate ordered networks, as it allows the error-checking that permits the network to crystallise, and so candidate network-forming chemistries such as amide that are irreversible under conventional low temperature bond-forming conditions have been underexplored. Here we show that we can prepare two- and three-dimensional covalent amide frameworks (CAFs) by devitrification of amorphous polyamide network polymers using high-temperature and high-pressure reaction conditions. In this way we have accessed reversible amide bond formation that allows crystalline order to develop. This strategy permits the direct synthesis of practically irreversible ordered amide networks that are stable thermally and under both strong acidic and basic hydrolytic conditions.
|
Oct 2017
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[12336, 17193]
Abstract: Phonon-glass electron-crystal (PGEC) behaviour is realised in La0.5Na0.5Ti1–xNbxO3 thermoelectric oxides. The vibrational disorder imposed by the presence of both La3+ and Na+ cations on the A site of the ABO3 perovskite oxide La0.5Na0.5TiO3 produces a phonon-glass with a thermal conductivity, κ, 80% lower than that of SrTiO3 at room temperature. Unlike other state-of-the-art thermoelectric oxides, where there is strong coupling of κ to the electronic power factor, the electronic transport of these materials can be optimised independently of the thermal transport through cation substitution at the octahedral B site. The low κ of the phonon-glass parent is retained across the La0.5Na0.5Ti1–xNbxO3 series without disrupting the electronic conductivity, affording PGEC behaviour in oxides.
|
Aug 2017
|
|
I11-High Resolution Powder Diffraction
|
Abstract: The discovery of new materials is hampered by the lack of efficient approaches to the exploration of both the large number of possible elemental compositions for such materials, and of the candidate structures at each composition1. For example, the discovery of inorganic extended solid structures has relied on knowledge of crystal chemistry coupled with time-consuming materials synthesis with systematically varied elemental ratios2, 3. Computational methods have been developed to guide synthesis by predicting structures at specific compositions4, 5, 6 and predicting compositions for known crystal structures7, 8, with notable successes9, 10. However, the challenge of finding qualitatively new, experimentally realizable compounds, with crystal structures where the unit cell and the atom positions within it differ from known structures, remains for compositionally complex systems. Many valuable properties arise from substitution into known crystal structures, but materials discovery using this approach alone risks both missing best-in-class performance and attempting design with incomplete knowledge8, 11. Here we report the experimental discovery of two structure types by computational identification of the region of a complex inorganic phase field that contains them. This is achieved by computing probe structures that capture the chemical and structural diversity of the system and whose energies can be ranked against combinations of currently known materials. Subsequent experimental exploration of the lowest-energy regions of the computed phase diagram affords two materials with previously unreported crystal structures featuring unusual structural motifs. This approach will accelerate the systematic discovery of new materials in complex compositional spaces by efficiently guiding synthesis and enhancing the predictive power of the computational tools through expansion of the knowledge base underpinning them.
|
Jun 2017
|
|