I04-Macromolecular Crystallography
|
Gianni
Chessari
,
Ian R.
Hardcastle
,
Jong Sook
Ahn
,
Burcu
Anil
,
Elizabeth
Anscombe
,
Ruth H.
Bawn
,
Luke D.
Bevan
,
Timothy J.
Blackburn
,
Ildiko
Buck
,
Celine
Cano
,
Benoit
Carbain
,
Juan
Castro
,
Ben
Cons
,
Sarah J.
Cully
,
Jane A.
Endicott
,
Lynsey
Fazal
,
Bernard T.
Golding
,
Roger J.
Griffin
,
Karen
Haggerty
,
Suzannah J.
Harnor
,
Keisha
Hearn
,
Stephen
Hobson
,
Rhian S.
Holvey
,
Steven
Howard
,
Claire E.
Jennings
,
Christopher N.
Johnson
,
John
Lunec
,
Duncan C.
Miller
,
David R.
Newell
,
Martin E. M.
Noble
,
Judith
Reeks
,
Charlotte H.
Revill
,
Christiane
Riedinger
,
Jeffrey D.
St. Denis
,
Emiliano
Tamanini
,
Huw
Thomas
,
Neil T.
Thompson
,
Mladen
Vinković
,
Stephen R.
Wedge
,
Pamela A.
Williams
,
Nicola E.
Wilsher
,
Bian
Zhang
,
Yan
Zhao
Abstract: Inhibition of murine double minute 2 (MDM2)-p53 protein–protein interaction with small molecules has been shown to reactivate p53 and inhibit tumor growth. Here, we describe rational, structure-guided, design of novel isoindolinone-based MDM2 inhibitors. MDM2 X-ray crystallography, quantum mechanics ligand-based design, and metabolite identification all contributed toward the discovery of potent in vitro and in vivo inhibitors of the MDM2-p53 interaction with representative compounds inducing cytostasis in an SJSA-1 osteosarcoma xenograft model following once-daily oral administration.
|
Mar 2021
|
|
B21-High Throughput SAXS
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Marco
Salamina
,
Bailey C.
Montefiore
,
Mengxi
Liu
,
Daniel J.
Wood
,
Richard
Heath
,
James R.
Ault
,
Lan-Zhen
Wang
,
Svitlana
Korolchuk
,
Arnaud
Basle
,
Martyna
Pastok
,
Judith
Reeks
,
Natalie J.
Tatum
,
Frank
Sobott
,
Stefan T.
Arold
,
Michele
Pagano
,
Martin E. M.
Noble
,
Jane A.
Endicott
Diamond Proposal Number(s):
[13587, 16970]
Open Access
Abstract: The SCFSKP2 ubiquitin ligase relieves G1 checkpoint control of CDK-cyclin complexes by promoting p27KIP1 degradation. We describe reconstitution of stable complexes containing SKP1-SKP2 and CDK1-cyclin B or CDK2-cyclin A/E, mediated by the CDK regulatory subunit CKS1. We further show that a direct interaction between a SKP2 N-terminal motif and cyclin A can stabilize SKP1-SKP2-CDK2-cyclin A complexes in the absence of CKS1. We identify the SKP2 binding site on cyclin A and demonstrate the site is not present in cyclin B or cyclin E. This site is distinct from but overlapping with features that mediate binding of p27KIP1 and other G1 cyclin regulators to cyclin A. We propose that the capacity of SKP2 to engage with CDK2-cyclin A by more than one structural mechanism provides a way to fine tune the degradation of p27KIP1 and distinguishes cyclin A from other G1 cyclins to ensure orderly cell cycle progression.
|
Mar 2021
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Alice
Douangamath
,
Daren
Fearon
,
Paul
Gehrtz
,
Tobias
Krojer
,
Petra
Lukacik
,
C. David
Owen
,
Efrat
Resnick
,
Claire
Strain-Damerell
,
Anthony
Aimon
,
Péter
Ábrányi-Balogh
,
Jose
Brandao-Neto
,
Anna
Carbery
,
Gemma
Davison
,
Alexandre
Dias
,
Thomas D.
Downes
,
Louise
Dunnett
,
Michael
Fairhead
,
James D.
Firth
,
S. Paul
Jones
,
Aaron
Keeley
,
György M.
Keserü
,
Hanna F.
Klein
,
Mathew P.
Martin
,
Martin M.
Noble
,
Peter
O’brien
,
Ailsa
Powell
,
Rambabu N.
Reddi
,
Rachael
Skyner
,
Matthew
Snee
,
Michael J.
Waring
,
Conor
Wild
,
Nir
London
,
Frank
Von Delft
,
Martin A.
Walsh
Open Access
Abstract: COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.
|
Oct 2020
|
|
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Stephanie
Myers
,
Duncan C.
Miller
,
Lauren
Molyneux
,
Mercedes
Arasta
,
Ruth H.
Bawn
,
Timothy
Blackburn
,
Simon J.
Cook
,
Noel
Edwards
,
Jane A.
Endicott
,
Bernard T.
Golding
,
Roger J.
Griffin
,
Tim
Hammonds
,
Ian R.
Hardcastle
,
Suzannah J.
Harnor
,
Amy
Heptinstall
,
Pamela
Lochhead
,
Mathew P.
Martin
,
Nick C.
Martin
,
David R.
Newell
,
Paul J.
Owen
,
Leon C.
Pang
,
Tristan
Reuillon
,
Laurent J. M.
Rigoreau
,
Huw
Thomas
,
Julie A.
Tucker
,
Lan-Zhen
Wang
,
Ai-Ching
Wong
,
Martin E. M.
Noble
,
Stephen R.
Wedge
,
Celine
Cano
Diamond Proposal Number(s):
[9948, 13587]
Abstract: Extracellular regulated kinase 5 (ERK5) signalling has been implicated in driving a number of cellular phenotypes including endothelial cell angiogenesis and tumour cell motility. Novel ERK5 inhibitors were identified using high throughput screening, with a series of pyrrole-2-carboxamides substituted at the 4-position with an aroyl group being found to exhibit IC50 values in the micromolar range, but having no selectivity against p38α MAP kinase. Truncation of the N-substituent marginally enhanced potency (∼3-fold) against ERK5, but importantly attenuated inhibition of p38α. Systematic variation of the substituents on the aroyl group led to the selective inhibitor 4-(2-bromo-6-fluorobenzoyl)-N-(pyridin-3-yl)-1H-pyrrole-2-carboxamide (IC50 0.82 μM for ERK5; IC50 > 120 μM for p38α). The crystal structure (PDB 5O7I) of this compound in complex with ERK5 has been solved. This compound was orally bioavailable and inhibited bFGF-driven Matrigel plug angiogenesis and tumour xenograft growth. The selective ERK5 inhibitor described herein provides a lead for further development into a tool compound for more extensive studies seeking to examine the role of ERK5 signalling in cancer and other diseases.
|
May 2019
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Daniel J.
Wood
,
José Daniel
Lopez-Fernandez
,
Leanne E.
Knight
,
Islam
Al-Khawaldeh
,
Conghao
Gai
,
Shengyin
Lin
,
Mathew P.
Martin
,
Duncan C.
Miller
,
Celine
Cano
,
Jane A.
Endicott
,
Ian R.
Hardcastle
,
Martin E. M.
Noble
,
Michael J.
Waring
Abstract: Identifying ligand binding sites on proteins is a critical step in target-based drug discovery. Current approaches to this require resource intensive screening of large libraries of lead-like or fragment molecules. Here we describe an efficient and effective experimental approach to mapping interaction sites using a set of halogenated compounds expressing paired hydrogen-bonding motifs, termed FragLites. The FragLites identify productive drug-like interactions, which are identified sensitively and unambiguously by X-ray crystallography, exploiting the anomalous scattering of the halogen substituent. This mapping of protein interaction surfaces provides an assessment of druggability and can identify efficient start points for the de novo design of hit molecules incorporating the interacting motifs. The approach is illustrated by mapping cyclin-dependent kinase 2, which successfully identifies orthosteric and allosteric sites. The hits were rapidly elaborated to develop efficient lead-like molecules. Hence, the approach provides a new method of identifying ligand sites, assessing tractability and discovering new leads.
|
Mar 2019
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18598, 13587]
Open Access
Abstract: Dysregulation of the cell cycle characterizes many cancer subtypes, providing a rationale for developing cyclin-dependent kinase (CDK) inhibitors. Potent CDK2 inhibitors might target certain cancers in which CCNE1 is amplified. However, current CDK2 inhibitors also inhibit CDK1, generating a toxicity liability. We have used biophysical measurements and X-ray crystallography to investigate the ATP-competitive inhibitor binding properties of cyclin-free and cyclin-bound CDK1 and CDK2. We show that these kinases can readily be distinguished by such inhibitors when cyclin-free, but not when cyclin-bound. The basis for this discrimination is unclear from either inspection or molecular dynamics simulation of ligand-bound CDKs, but is reflected in the contacts made between the kinase N- and C-lobes. We conclude that there is a subtle but profound difference between the conformational energy landscapes of cyclin-free CDK1 and CDK2. The unusual properties of CDK1 might be exploited to differentiate CDK1 from other CDKs in future cancer therapeutic design.
|
Nov 2018
|
|
|
Duncan C.
Miller
,
Mathew P.
Martin
,
Santosh
Adhikari
,
Alfie
Brennan
,
Jane A.
Endicott
,
Bernard T.
Golding
,
Ian R.
Hardcastle
,
Amy
Heptinstall
,
Stephen
Hobson
,
Claire
Jennings
,
Lauren
Molyneux
,
Yvonne
Ng
,
Stephen R.
Wedge
,
Martin
Noble
,
Celine
Cano
Open Access
Abstract: ATAD2 is an ATPase that is overexpressed in a variety of cancers and associated with a poor patient prognosis. This protein has been suggested to function as a cofactor for a range of transcription factors, including the proto-oncogene MYC and the androgen receptor. ATAD2 comprises an ATPase domain, implicated in chromatin remodelling, and a bromodomain which allows it to interact with acetylated histone tails. Dissection of the functional roles of these two domains would benefit from the availability of selective, cell-permeable pharmacological probes. An in silico evaluation of the 3D structures of various bromodomains suggested that developing small molecule ligands for the bromodomain of ATAD2 is likely to be challenging, although recent reports have shown that ATAD2 bromodomain ligands can be identified. We report a structure-guided fragment-based approach to identify lead compounds for ATAD2 bromodomain inhibitor development. Our findings indicate that the ATAD2 bromodomain can accommodate fragment hits (Mr < 200) that yield productive structure–activity relationships, and structure-guided design enabled the introduction of selectivity over BRD4.
|
Feb 2018
|
|
|
Liz
Potterton
,
Jon
Agirre
,
Charles
Ballard
,
Kevin
Cowtan
,
Eleanor
Dodson
,
Phil R.
Evans
,
Huw T.
Jenkins
,
Ronan
Keegan
,
Eugene
Krissinel
,
Kyle
Stevenson
,
Andrey
Lebedev
,
Stuart J.
Mcnicholas
,
Robert A.
Nicholls
,
Martin
Noble
,
Navraj S.
Pannu
,
Christian
Roth
,
George
Sheldrick
,
Pavol
Skubak
,
Johan
Turkenburg
,
Ville
Uski
,
Frank
Von Delft
,
David
Waterman
,
Keith
Wilson
,
Martyn
Winn
,
Marcin
Wojdyr
Open Access
Abstract: The CCP4 (Collaborative Computational Project, Number 4) software suite for macromolecular structure determination by X-ray crystallography groups brings together many programs and libraries that, by means of well established conventions, interoperate effectively without adhering to strict design guidelines. Because of this inherent flexibility, users are often presented with diverse, even divergent, choices for solving every type of problem. Recently, CCP4 introduced CCP4i2, a modern graphical interface designed to help structural biologists to navigate the process of structure determination, with an emphasis on pipelining and the streamlined presentation of results. In addition, CCP4i2 provides a framework for writing structure-solution scripts that can be built up incrementally to create increasingly automatic procedures.
|
Feb 2018
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[9948]
Open Access
Abstract: Cancer cells reprogram their metabolism and energy production to sustain increased growth, enable metastasis and overcome resistance to cancer treatments. Although primary roles for many metabolic proteins have been identified, some are promiscuous in regards to the reaction they catalyze. To efficiently target these enzymes, a good understanding of their enzymatic function and structure, as well as knowledge regarding any substrate or catalytic promiscuity is required. Here we focus on the characterization of human 3-phosphoglycerate dehydrogenase (PHGDH). PHGDH catalyzes the NAD+-dependent conversion of 3-phosphoglycerate to phosphohydroxypyruvate, which is the first step in the de novo synthesis pathway of serine, a critical amino acid for protein and nucleic acid biosynthesis. We have investigated substrate analogues to assess whether PHGDH might possess other enzymatic roles that could explain its occasional over-expression in cancer, as well as to help with the design of specific inhibitors. We also report the crystal structure of the catalytic subunit of human PHGDH, a dimer, solved with bound cofactor in one monomer and both cofactor and L-tartrate in the second monomer. In vitro enzyme activity measurements show that the catalytic subunit of PHGDH is still active and that PHGDH activity could be significantly inhibited with adenosine 5’-diphosphoribose.
|
Nov 2017
|
|
I02-Macromolecular Crystallography
|
Steven R.
Whittaker
,
Clare
Barlow
,
Mathew
Martin
,
Caterina
Mancusi
,
Steve
Wagner
,
Annette
Self
,
Elaine
Barrie
,
Robert
Te Poele
,
Swee
Sharp
,
Nathan
Brown
,
Stuart
Wilson
,
Wayne
Jackson
,
Peter M.
Fischer
,
Paul A.
Clarke
,
Michael I.
Walton
,
Edward
Mcdonald
,
Julian
Blagg
,
Martin
Noble
,
Michelle D.
Garrett
,
Paul
Workman
Diamond Proposal Number(s):
[9948]
Abstract: Deregulation of the cyclin-dependent kinases (CDKs) has been implicated in the pathogenesis of multiple cancer types. Consequently, CDKs have garnered intense interest as therapeutic targets for the treatment of cancer. We describe herein the molecular and cellular effects of CCT068127, a novel inhibitor of CDK2 and CDK9. Optimised from the purine template of seliciclib, CCT068127 exhibits greater potency and selectivity against purified CDK2 and CDK9 and superior antiproliferative activity against human colon cancer and melanoma cell lines. X-ray crystallography studies reveal that hydrogen bonding with the DFG motif of CDK2 is the likely mechanism of greater enzymatic potency. Commensurate with inhibition of CDK activity, CCT068127 treatment results in decreased retinoblastoma protein (RB) phosphorylation, reduced phosphorylation of RNA polymerase II and induction of cell cycle arrest and apoptosis. The transcriptional signature of CCT068127 shows greatest similarity to other small molecule CDK and also HDAC inhibitors. CCT068127 caused a dramatic loss in expression of DUSP6 phosphatase, alongside elevated ERK phosphorylation and activation of MAPK pathway target genes. MCL1 protein levels are rapidly decreased by CCT068127 treatment and this associates with synergistic antiproliferative activity after combined treatment with CCT068127 and ABT263, a BCL2-family inhibitor. These findings support the rational combination of this series of CDK2/9 inhibitors and BCL2 family inhibitors for the treatment of human cancer.
|
Oct 2017
|
|