I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[21474]
Abstract: We report the first microporous cobalt imidazolate glass obtained from a meltable cobalt-based zeolitic imidazolate framework, ZIF-62(Co). Crystalline ZIF-62(Co) is constructed from Co2+ cations and two different imidazolate-type linkers, namely conventional imidazolate and benzimidazolate. The microporous framework melts at ∼430 °C and converts into a glass upon cooling to room temperature. X-Ray total scattering and Raman spectroscopy reveal that the local structure of the glass and the crystalline parent material are very similar. Magnetic measurements and X-ray diffraction uncover that ZIF-62(Co) partially decomposes upon melting and glass formation resulting in the reduction of ∼3% of the Co2+ ions to metallic cobalt. Most importantly, the ZIF glass retains almost 50% of the porosity of crystalline ZIF-62(Co). Our results pave the way for the realisation of metal–organic framework glasses containing open shell metal ions, as well as the application of these porous glasses in gas separation, energy storage and catalysis.
|
Jan 2019
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Hamish
Yeung
,
Adam F.
Sapnik
,
Felicity
Massingberd-mundy
,
Michael W.
Gaultois
,
Yue
Wu
,
Duncan X.
Fraser
,
Sebastian
Henke
,
Roman
Pallach
,
Niclas
Heidenreich
,
Oxana
Magdysyuk
,
Nghia T.
Vo
,
Andrew L.
Goodwin
Diamond Proposal Number(s):
[16354, 16450]
Abstract: There is an increasingly large amount of interest in metal‐organic frameworks (MOFs) for a variety of applications, from gas sensing and separations to electronics and catalysis. Their exciting properties arise from their modular architectures, which self‐assemble from different combinations of metal‐based and organic building units. However, the exact mechanisms by which they crystallize remain poorly understood, thus limiting any realisation of real “structure by design”. We report important new insight into MOF formation, gained using in situ X‐ray diffraction, pH and turbidity measurements to uncover for the first time the evolution of metastable intermediate species in the canonical zeolitic imidazolate framework system, ZIF‐8. We reveal that the intermediate species exist in a dynamic pre‐equilibrium prior to network assembly and, depending on the reactant concentrations and the progress of reaction, the pre‐equilibrium can be made to favour under‐ or over‐coordinated Zn‐imidazolate species, thus accelerating or inhibiting crystallization, respectively. We thereby find that concentration can be effectively used as a synthetic handle to directly control particle size, with great implications for industrial scale‐up and gas sorption applications. These finding enables us to rationalise the apparent contradictions between previous studies of ZIF‐8 and, importantly, opens up new opportunities for the control of crystallization in network solids more generally, from the design of local structure to assembly of particles with precise dimensions.
|
Nov 2018
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[9225]
Abstract: The pillared-layered metal-organic framework compounds M2(BME-bdc)2(dabco) (M2+ = Zn2+, Co2+, Ni2+, Cu2+; BME-bdc2- = 2,5-bis(2-methoxyethoxy)-1,4-benzenedicarboxylate; dabco = diazabicyclo[2.2.2]octane) exhibit structural flex-ibility and undergo guest and temperature-induced reversible phase transitions between a narrow pore (np) and a large pore (lp) form. These transitions were analyzed in detail by powder X-ray diffraction (ex and in situ), isothermal gas adsorption measurements and differential scanning calorimetry. The threshold parameters (gas pressure or tem-perature), the magnitude of the phase transitions (volume change) as well as their transition enthalpies are strikingly dependent on the chosen metal cation M2+. This observation is assigned to the different electronic structures and lig-and field effects on the coordination bonds. Accordingly, in situ PXRD measurements as a function of CO2 pressure reveal different mechanisms for the np to lp phase transition during CO2 adsorption.
|
Feb 2018
|
|
I15-Extreme Conditions
|
Diamond Proposal Number(s):
[12370]
Open Access
Abstract: We investigate the pressure-dependent mechanical behaviour of the zeolitic imidazolate framework ZIF-4 (M(im)2; M2+ = Co2+ or Zn2+, im− = imidazolate) with high pressure, synchrotron powder X-ray diffraction and mercury intrusion measurements. A displacive phase transition from a highly compressible open pore (op) phase with continuous porosity (space group Pbca, bulk modulus ∼1.4 GPa) to a closed pore (cp) phase with inaccessible porosity (space group P21/c, bulk modulus ∼3.3–4.9 GPa) is triggered by the application of mechanical pressure. Over the course of the transitions, both ZIF-4 materials contract by about 20% in volume. However, the threshold pressure, the reversibility and the immediate repeatability of the phase transition depend on the metal cation. ZIF-4(Zn) undergoes the op–cp phase transition at a hydrostatic mechanical pressure of only 28 MPa, while ZIF-4(Co) requires about 50 MPa to initiate the transition. Interestingly, ZIF-4(Co) fully returns to the op phase after decompression, whereas ZIF-4(Zn) remains in the cp phase after pressure release and requires subsequent heating to switch back to the op phase. These variations in high pressure behaviour can be rationalised on the basis of the different electron configurations of the respective M2+ ions (3d10 for Zn2+ and 3d7 for Co2+). Our results present the first examples of op–cp phase transitions (i.e. breathing transitions) of ZIFs driven by mechanical pressure and suggest potential applications of these functional materials as shock absorbers, nanodampers, or in mechanocalorics.
|
Jan 2018
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[11884]
Abstract: Versatility in metal substitution is one of the key aspects of metal-organic framework (MOF) chemistry, allowing properties to be tuned in a rational way. As a result, it important to understand why MOF syntheses involving different metals arrive at or fail to produce the same topological outcome. Frequently, conditions are tuned by trial-and-error to make MOFs with different metal species. We ask: is it possible to adjust synthetic conditions in a systematic way in order to design routes to desired phases? We have used in situ X-ray powder diffraction to study the solvothermal formation of isostructural M2(bdc)2dabco (M=Zn, Co, Ni) pillared-paddlewheel MOFs in real time. The metal ion strongly influences both kinetics and intermediates observed, leading in some cases to multiphase reaction profiles of unprecedented complexity. The standard models used for MOF crystallization break down in these cases; we show that a simple kinetic model describes the data and provides important chemical insights on phase selection.
|
Nov 2016
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[8521]
Abstract: Eleven novel coordination compounds, composed of chrysazin (1,8-dihydroxyanthraquinone) and different first-row transition metals (Fe, Co, Ni, Cu), were synthesised and the structures determined by single-crystal X-ray diffraction. The synthetic trends were investigated using high-throughput synthesis under systematic variation of concentration and reagent stoichiometry: for complexes containing Co, Ni or Cu crystallisation was improved by low ligand[thin space (1/6-em)]:[thin space (1/6-em)]metal ratios, while the effect of concentration depended on the metal used. The compounds crystallise as discrete clusters, apart from two, which contain long Cu–O bonds which may allow the two compounds to be considered one-dimensional coordination polymers. One of these compounds shows a distance between aryl rings of less than 3.26 Å, which is shorter than that in graphite, suggesting applications as an organic–inorganic semiconductor. The compound was found to be insulating by single-crystal and powder AC-impedance measurements, and this result is discussed with reference to the electronic structure calculated using density-functional theory.
|
May 2016
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[9661]
Abstract: Understanding the driving forces controlling crys-tallization is essential for the efficient synthesis and design ofnew materials,particularly metal–organic frameworks(MOFs), where mild solvothermal synthesis often allowsaccess to various phases from the same reagents.Using high-energy in situ synchrotron X-ray powder diffraction, wemonitor the crystallization of lithium tartrate MOFs,observingthe successive crystallization and dissolution of three compet-ing phases in one reaction. By determining rate constants andactivation energies,wefully quantify the reaction energylandscape,gaining important predictive power for the choice ofreaction conditions.Different reaction rates are explained bythe structural relationships between the products and thereactants;larger changes in conformation result in higheractivation energies.The methods we demonstrate can easily beapplied to other materials,opening the door to agreaterunderstanding of crystallization in general.
|
Feb 2016
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[8580]
Abstract: The mechanical properties of calcium fumarate trihydrate, a 1D coordination polymer considered for use as a calcium source for food and beverage enrichment, have been determined via nanoindentation and high-pressure X-ray diffraction with single crystals. The nanoindentation studies reveal that the elastic modulus (16.7–33.4 GPa, depending on crystallographic orientation), hardness (1.05–1.36 GPa), yield stress (0.70–0.90 GPa), and creep behavior (0.8–5.8 nm/s) can be rationalized in view of the anisotropic crystal structure; factors include the directionality of the inorganic Ca–O–Ca chain and hydrogen bonding, as well as the orientation of the fumarate ligands. High-pressure single-crystal X-ray diffraction studies show a bulk modulus of ∼20 GPa, which is indicative of elastic recovery intermediate between small molecule drug crystals and inorganic pharmaceutical ingredients. The combined use of nanoindentation and high-pressure X-ray diffraction techniques provides a complementary experimental approach for probing the critical mechanical properties related to tableting of these dietary supplements.
|
Nov 2015
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[9225]
Open Access
Abstract: Flexible metal–organic frameworks (MOFs) can undergo fascinating structural transitions triggered by external stimuli, such as adsorption/desorption of specific guest molecules or temperature changes. In this detailed study we investigate the potentials and limitations of tuning framework flexibility systematically by exploiting the powerful concept of mixed-linker solid solutions. We chose the prototypical family of functionalized pillared-layer MOFs of the general type Zn2(fu1-bdc)2x(fu2-bdc)2−2xdabco (with x = 1.00, 0.75, 0.50, 0.25 and 0.00; fu-bdc = 2,5-dialkoxy-1,4-benzenedicarboxylate with varying alkoxy chain length, dabco = 1,4-diazabicyclo[2.2.2]octane) and examined their guest responsive, as well as intrinsic temperature dependent structural flexibility by X-ray diffraction, gas physisorption and calorimetric measurements. The ratio of the different fu-bdc linkers can be adjusted freely, offering opportunity for a targeted design of these functional materials by modulating their key features, such as magnitude of framework contraction upon guest removal, breathing behaviour upon CO2 adsorption/desorption, thermoresponsive phase behaviour, and their general thermal expansivity, by the careful choice of fu-bdc linkers and their combination.
|
Oct 2015
|
|
I15-Extreme Conditions
I22-Small angle scattering & Diffraction
|
Thomas
Bennett
,
Jin-chong
Tan
,
Yuanzheng
Yue
,
Emma
Baxter
,
Caterina
Ducati
,
Nicholas
Terrill
,
Hamish
Yeung
,
Zhongfu
Zhou
,
Wenlin
Chen
,
Sebastian
Henke
,
Anthony K.
Cheetham
,
Neville
Greaves
Diamond Proposal Number(s):
[9691, 5692]
Open Access
Abstract: Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated. Here we show how heating MOFs of zeolitic topology first results in a low density /`perfect/' glass, similar to those formed in ice, silicon and disaccharides. This order-order transition leads to a super-strong liquid of low fragility that dynamically controls collapse, before a subsequent order-disorder transition, which creates a more fragile high-density liquid. After crystallization to a dense phase, which can be remelted, subsequent quenching results in a bulk glass, virtually identical to the high-density phase. We provide evidence that the wide-ranging melting temperatures of zeolitic MOFs are related to their network topologies and opens up the possibility of /`melt-casting/' MOF glasses.
|
Aug 2015
|
|