I04-Macromolecular Crystallography
I23-Long wavelength MX
I24-Microfocus Macromolecular Crystallography
Krios III-Titan Krios III at Diamond
|
Paola
Lanzoni-Mangutchi
,
Oishik
Banerji
,
Jason
Wilson
,
Anna
Barwinska-Sendra
,
Joseph A.
Kirk
,
Filipa
Vaz
,
Shauna
O’beirne
,
Arnaud
Basle
,
Kamel
El Omari
,
Armin
Wagner
,
Neil F.
Fairweather
,
Gillian R.
Douce
,
Per A.
Bullough
,
Robert P.
Fagan
,
Paula
Salgado
Diamond Proposal Number(s):
[15523, 18598, 19832]
Open Access
Abstract: Many bacteria and archaea possess a two-dimensional protein array, or S-layer, that covers the cell surface and plays crucial roles in cell physiology. Here, we report the crystal structure of SlpA, the main S-layer protein of the bacterial pathogen Clostridioides difficile, and use electron microscopy to study S-layer organisation and assembly. The SlpA crystal lattice mimics S-layer assembly in the cell, through tiling of triangular prisms above the cell wall, interlocked by distinct ridges facing the environment. Strikingly, the array is very compact, with pores of only ~10 Å in diameter, compared to other S-layers (30–100 Å). The surface-exposed flexible ridges are partially dispensable for overall structure and assembly, although a mutant lacking this region becomes susceptible to lysozyme, an important molecule in host defence. Thus, our work gives insights into S-layer organisation and provides a basis for development of C. difficile-specific therapeutics.
|
Feb 2022
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I23-Long wavelength MX
|
Leandro
Oliveira Bortot
,
Victor
Lopes Rangel
,
Francesca A.
Pavlovici
,
Kamel
El Omari
,
Armin
Wagner
,
Jose
Brandao-Neto
,
Romain
Talon
,
Frank
Von Delft
,
Andrew G.
Reidenbach
,
Sonia M.
Vallabh
,
Eric
Vallabh Minikel
,
Stuart
Schreiber
,
Maria Cristina
Nonato
Diamond Proposal Number(s):
[18954]
Abstract: Prion disease is caused by the misfolding of the cellular prion protein, PrPC, into a self-templating conformer, PrPSc. Nuclear magnetic resonance (NMR) and X-ray crystallography revealed the 3D structure of the globular domain of PrPC and the possibility of its dimerization via an interchain disulfide bridge that forms due to domain swap or by non-covalent association of two monomers. On the contrary, PrPSc is composed by a complex and heterogeneous ensemble of poorly defined conformations and quaternary arrangements that are related to different patterns of neurotoxicity. Targeting PrPC with molecules that stabilize the native conformation of its globular domain emerged as a promising approach to develop anti-prion therapies. One of the advantages of this approach is employing structure-based drug discovery methods to PrPC. Thus, it is essential to expand our structural knowledge about PrPC as much as possible to aid such drug discovery efforts. In this work, we report a crystallographic structure of the globular domain of human PrPC that shows a novel dimeric form and a novel oligomeric arrangement. We use molecular dynamics simulations to explore its structural dynamics and stability and discuss potential implications of these new quaternary structures to the conversion process.
|
Dec 2021
|
|
I04-Macromolecular Crystallography
I23-Long wavelength MX
|
Diamond Proposal Number(s):
[20145]
Open Access
Abstract: Pivotal to the regulation of key cellular processes such as the transcription, replication and repair of DNA, DNA-binding proteins play vital roles in all aspects of genetic activity. The determination of high-quality structures of DNA-binding proteins, particularly those in complexes with DNA, provides crucial insights into the understanding of these processes. The presence in such complexes of phosphate-rich oligonucleotides offers the choice of a rapid method for the routine solution of DNA-binding proteins through the use of long-wavelength beamlines such as I23 at Diamond Light Source. This article reports the use of native intrinsic phosphorus and sulfur single-wavelength anomalous dispersion methods to solve the complex of the DNA-binding domain (DBD) of interferon regulatory factor 4 (IRF4) bound to its interferon-stimulated response element (ISRE). The structure unexpectedly shows three molecules of the IRF4 DBD bound to one ISRE. The sole reliance on native intrinsic anomalous scattering elements that belong to DNA–protein complexes renders the method of general applicability to a large number of such protein complexes that cannot be solved by molecular replacement or by other phasing methods.
|
Jul 2021
|
|
|
Open Access
Abstract: The crystallization of recombinant proteins in living cells is an exciting new approach in structural biology. Recent success has highlighted the need for fast and efficient diffraction data collection, optimally directly exposing intact crystal-containing cells to the X-ray beam, thus protecting the in cellulo crystals from environmental challenges. Serial femtosecond crystallography (SFX) at free-electron lasers (XFELs) allows the collection of detectable diffraction even from tiny protein crystals, but requires very fast sample exchange to utilize each XFEL pulse. Here, an efficient approach is presented for high-resolution structure elucidation using serial femtosecond in cellulo diffraction of micometre-sized crystals of the protein HEX-1 from the fungus Neurospora crassa on a fixed target. Employing the fast and highly accurate Roadrunner II translation-stage system allowed efficient raster scanning of the pores of micro-patterned, single-crystalline silicon chips loaded with living, crystal-containing insect cells. Compared with liquid-jet and LCP injection systems, the increased hit rates of up to 30% and reduced background scattering enabled elucidation of the HEX-1 structure. Using diffraction data from only a single chip collected within 12 min at the Linac Coherent Light Source, a 1.8 Å resolution structure was obtained with significantly reduced sample consumption compared with previous SFX experiments using liquid-jet injection. This HEX-1 structure is almost superimposable with that previously determined using synchrotron radiation from single HEX-1 crystals grown by sitting-drop vapour diffusion, validating the approach. This study demonstrates that fixed-target SFX using micro-patterned silicon chips is ideally suited for efficient in cellulo diffraction data collection using living, crystal-containing cells, and offers huge potential for the straightforward structure elucidation of proteins that form intracellular crystals at both XFELs and synchrotron sources.
|
Jul 2021
|
|
I04-Macromolecular Crystallography
I23-Long wavelength MX
|
Open Access
Abstract: During metaphase, in response to improper kinetochore-microtubule attachments, the spindle assembly checkpoint (SAC) activates the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex/cyclosome (APC/C). This process is orchestrated by the kinase Mps1, which initiates the assembly of the MCC onto kinetochores through a sequential phosphorylation-dependent signalling cascade. The Mad1-Mad2 complex, which is required to catalyse MCC formation, is targeted to kinetochores through a direct interaction with the phosphorylated conserved domain 1 (CD1) of Bub1. Here, we present the crystal structure of the C-terminal domain of Mad1 (Mad1CTD) bound to two phosphorylated Bub1CD1 peptides at 1.75 Å resolution. This interaction is mediated by phosphorylated Bub1 Thr461, which not only directly interacts with Arg617 of the Mad1 RLK (Arg-Leu-Lys) motif, but also directly acts as an N-terminal cap to the CD1 α-helix dipole. Surprisingly, only one Bub1CD1 peptide binds to the Mad1 homodimer in solution. We suggest that this stoichiometry is due to inherent asymmetry in the coiled-coil of Mad1CTD and has implications for how the Mad1-Bub1 complex at kinetochores promotes efficient MCC assembly.
|
May 2021
|
|
I23-Long wavelength MX
|
Open Access
Abstract: In this paper a practical solution for the reconstruction and segmentation of low-contrast X-ray tomographic data of protein crystals from the long-wavelength macromolecular crystallography beamline I23 at Diamond Light Source is provided. The resulting segmented data will provide the path lengths through both diffracting and non-diffracting materials as basis for analytical absorption corrections for X-ray diffraction data taken in the same sample environment ahead of the tomography experiment. X-ray tomography data from protein crystals can be difficult to analyse due to very low or absent contrast between the different materials: the crystal, the sample holder and the surrounding mother liquor. The proposed data processing pipeline consists of two major sequential operations: model-based iterative reconstruction to improve contrast and minimize the influence of noise and artefacts, followed by segmentation. The segmentation aims to partition the reconstructed data into four phases: the crystal, mother liquor, loop and vacuum. In this study three different semi-automated segmentation methods are experimented with by using Gaussian mixture models, geodesic distance thresholding and a novel morphological method, RegionGrow, implemented specifically for the task. The complete reconstruction-segmentation pipeline is integrated into the MPI-based data analysis and reconstruction framework Savu, which is used to reduce computation time through parallelization across a computing cluster and makes the developed methods easily accessible.
|
May 2021
|
|
I23-Long wavelength MX
|
Open Access
Abstract: Long-wavelength macromolecular crystallography (MX) exploits the anomalous scattering properties of elements, such as sulfur, phosphorus, potassium, chlorine, or calcium, that are often natively present in macromolecules. This enables the direct structure solution of proteins and nucleic acids via experimental phasing without the need of additional labelling. To eliminate the significant air absorption of X-rays in this wavelength regime, these experiments are performed in a vacuum environment. Beamline I23 at Diamond Light Source, UK, is the first synchrotron instrument of its kind, designed and optimized for MX experiments in the long wavelength range towards 5 Å.
To make this possible, a large vacuum vessel encloses all endstation components of the sample environment. The necessity to maintain samples at cryogenic temperatures during storage and data collection in vacuum requires the use of thermally conductive sample holders. This facilitates efficient heat removal to ensure sample cooling to approximately 50 K. The current protocol describes the procedures used for sample preparation and transfer of samples into vacuum on beamline I23. Ensuring uniformity in practices and methods already established within the macromolecular crystallography community, sample cooling to liquid nitrogen temperature can be performed in any laboratory setting equipped with standard MX tools.
Cryogenic storage and transport of samples only require standard commercially available equipment. Specialized equipment is required for the transfer of cryogenically cooled crystals from liquid nitrogen into the vacuum endstation. Bespoke sample handling tools and a dedicated Cryogenic Transfer System (CTS) have been developed in house. Diffraction data collected on samples prepared using this protocol show excellent merging statistics, indicating that the quality of samples is unaltered during the procedure. This opens unique opportunities for in-vacuum MX in a wavelength range beyond standard synchrotron beamlines.
|
Apr 2021
|
|
I23-Long wavelength MX
|
Kamel
El Omari
,
Nada
Mohamad
,
Kiran
Bountra
,
Ramona
Duman
,
Maria
Romano
,
Katja
Schlegel
,
Hok-Sau
Kwong
,
Vitaliy
Mykhaylyk
,
Claus
Olesen
,
Jesper Vuust
Moller
,
Maike
Bublitz
,
Konstantinos
Beis
,
Armin
Wagner
Open Access
Abstract: The structure determination of soluble and membrane proteins can be hindered by the crystallographic phase problem, especially in the absence of a suitable homologous structure. Experimental phasing is the method of choice for novel structures; however, it often requires heavy-atom derivatization, which can be difficult and time-consuming. Here, a novel and rapid method to obtain experimental phases for protein structure determination by vanadium phasing is reported. Vanadate is a transition-state mimic of phosphoryl-transfer reactions and it has the advantage of binding specifically to the active site of numerous enzymes catalyzing this reaction. The applicability of vanadium phasing has been validated by determining the structures of three different protein–vanadium complexes, two of which are integral membrane proteins: the rabbit sarcoplasmic reticulum Ca2+-ATPase, the antibacterial peptide ATP-binding cassette transporter McjD from Escherichia coli and the soluble enzyme RNAse A from Bos taurus. Vanadium phasing was successful even at low resolution and despite severe anisotropy in the data. This method is principally applicable to a large number of proteins, representing six of the seven Enzyme Commission classes. It relies exclusively on the specific chemistry of the protein and it does not require any modifications, making it a very powerful addition to the phasing toolkit. In addition to the phasing power of this technique, the protein–vanadium complexes also provide detailed insights into the reaction mechanisms of the studied proteins.
|
Nov 2020
|
|
I23-Long wavelength MX
|
Open Access
Abstract: K2P potassium channels regulate cellular excitability using their selectivity filter (C-type) gate. C-type gating mechanisms, best characterized in homotetrameric potassium channels, remain controversial and are attributed to selectivity filter pinching, dilation, or subtle structural changes. The extent to which such mechanisms control C-type gating of innately heterodimeric K2Ps is unknown. Here, combining K2P2.1 (TREK-1) x-ray crystallography in different potassium concentrations, potassium anomalous scattering, molecular dynamics, and electrophysiology, we uncover unprecedented, asymmetric, potassium-dependent conformational changes that underlie K2P C-type gating. These asymmetric order-disorder transitions, enabled by the K2P heterodimeric architecture, encompass pinching and dilation, disrupt the S1 and S2 ion binding sites, require the uniquely long K2P SF2-M4 loop and conserved “M3 glutamate network,” and are suppressed by the K2P C-type gate activator ML335. These findings demonstrate that two distinct C-type gating mechanisms can operate in one channel and underscore the SF2-M4 loop as a target for K2P channel modulator development.
|
Oct 2020
|
|
|
Open Access
Abstract: Luminescence methods for non-contact temperature monitoring have evolved through improvements of hardware and sensor materials. Future advances in this field rely on the development of multimodal sensing capabilities of temperature probes and extend the temperature range across which they operate. The family of Cr-doped oxides appears particularly promising and we review their luminescence characteristics in light of their application in non-contact measurements of temperature over the 5–300 K range. Multimodal sensing utilizes the intensity ratio of emission lines, their wavelength shift, and the scintillation decay time constant. We carried out systematic studies of the temperature-induced changes in the luminescence of the Cr3+-doped oxides Al2O3, Ga2O3, Y3Al5O12, and YAlO3. The mechanism responsible for the temperature-dependent luminescence characteristic is discussed in terms of relevant models. It is shown that the thermally-induced processes of particle exchange, governing the dynamics of Cr3+ ion excited state populations, require low activation energy. This then translates into tangible changes of a luminescence parameter with temperature. We compare different schemes of temperature sensing and demonstrate that Ga2O3-Cr is a promising material for non-contact measurements at cryogenic temperatures. A temperature resolution better than ±1 K can be achieved by monitoring the luminescence intensity ratio (40–140 K) and decay time constant (80–300 K range).
|
Sep 2020
|
|