I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: Sialic acids terminate many N- and O-glycans and are widely distributed on cell surfaces. There are a diverse range of enzymes which interact with these sugars throughout the tree of life. They can act as receptors for influenza and specific betacoronaviruses in viral binding and their cleavage is important in virion release. Sialic acids are also exploited by both commensal and pathogenic bacteria for nutrient acquisition. A common modification of sialic acid is 9-O-acetylation, which can limit the action of sialidases. Some bacteria, including human endosymbionts, employ esterases to overcome this modification. However, few bacterial sialic acid 9-O-acetylesterases (9-O-SAEs) have been structurally characterized. Here, the crystal structure of a 9-O-SAE from Phocaeicola vulgatus (PvSAE) is reported. The structure of PvSAE was determined to resolutions of 1.44 and 2.06 Å using crystals from two different crystallization conditions. Structural characterization revealed PvSAE to be a dimer with an SGNH fold, named after the conserved sequence motif of this family, and a Ser–His–Asp catalytic triad. These structures also reveal flexibility in the most N-terminal α-helix, which provides a barrier to active-site accessibility. Biochemical assays also show that PvSAE deacetylates both mucin and the acetylated chromophore para-nitrophenyl acetate. This structural and biochemical characterization of PvSAE furthers the understanding of 9-O-SAEs and may aid in the discovery of small molecules targeting this class of enzyme.
|
May 2022
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: Sulfoquinovose (SQ) is the anionic headgroup of the ubiquitous plant sulfolipid, sulfoquinovosyl diacylglycerol (SQDG). SQDG can undergo delipidation to give sulfoquinovosyl glycerol (SQGro) and further glycoside cleavage to give SQ, which can be metabolized through microbial sulfoglycolytic pathways. Exogenous SQDG metabolites are imported into bacteria through membrane spanning transporter proteins. The recently discovered sulfoglycolytic sulfoquinovose monooxygenase (sulfo-SMO) pathway in Agrobacterium tumefaciens features a periplasmic sulfoquinovosyl glycerol binding protein, SmoF, and an ATP-binding cassette (ABC) transporter. Here, we use X-ray crystallography, differential scanning fluorimetry and isothermal titration calorimetry to study SQ glycoside recognition by SmoF. This work reveals that in addition to SQGro, SmoF can also bind SQ, a simple methyl glycoside and even a short-chain SQDG analogue. Molecular recognition of these substrates is achieved through conserved interactions with the SQ-headgroup together with more plastic interactions with the aglycones. This suggests that the solute binding protein of A. tumefaciens, and related SQ-binding proteins from other sulfoglycolytic pathways, can provide their host organisms direct access to most of the SQ metabolites known to be produced by phototrophs.
|
Mar 2022
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Manuel
González-Cuesta
,
Peter
Sidhu
,
Roger A.
Ashmus
,
Alexandra
Males
,
Cameron
Proceviat
,
Zarina
Madden
,
Jason C.
Rogalski
,
Jil A.
Busmann
,
Leonard J.
Foster
,
José M.
García Fernández
,
Gideon J.
Davies
,
Carmen
Ortiz Mellet
,
David J.
Vocadlo
Diamond Proposal Number(s):
[18598]
Abstract: Owing to its roles in human health and disease, the modification of nuclear, cytoplasmic, and mitochondrial proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) has emerged as a topic of great interest. Despite the presence of O-GlcNAc on hundreds of proteins within cells, only two enzymes regulate this modification. One of these enzymes is O-GlcNAcase (OGA), a dimeric glycoside hydrolase that has a deep active site cleft in which diverse substrates are accommodated. Chemical tools to control OGA are emerging as essential resources for helping to decode the biochemical and cellular functions of the O-GlcNAc pathway. Here we describe rationally designed bicyclic thiazolidine inhibitors that exhibit superb selectivity and picomolar inhibition of human OGA. Structures of these inhibitors in complex with human OGA reveal the basis for their exceptional potency and show that they extend out of the enzyme active site cleft. Leveraging this structure, we create a high affinity chemoproteomic probe that enables simple one-step purification of endogenous OGA from brain and targeted proteomic mapping of its post-translational modifications. These data uncover a range of new modifications, including some that are less-known, such as O-ubiquitination and N-formylation. We expect that these inhibitors and chemoproteomics probes will prove useful as fundamental tools to decipher the mechanisms by which OGA is regulated and directed to its diverse cellular substrates. Moreover, the inhibitors and structures described here lay out a blueprint that will enable the creation of chemical probes and tools to interrogate OGA and other carbohydrate active enzymes.
|
Jan 2022
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Mahima
Sharma
,
James P.
Lingford
,
Marija
Petricevic
,
Alexander J. D.
Snow
,
Yunyang
Zhang
,
Michael A.
Järvå
,
Janice W.-Y.
Mui
,
Nichollas E.
Scott
,
Eleanor C.
Saunders
,
Runyu
Mao
,
Ruwan
Epa
,
Bruna M.
Da Silva
,
Douglas E. V.
Pires
,
David B.
Ascher
,
Malcolm J.
Mcconville
,
Gideon J.
Davies
,
Spencer J.
Williams
,
Ethan D.
Goddard-Borger
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: Catabolism of sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose), the ubiquitous sulfosugar produced by photosynthetic organisms, is an important component of the biogeochemical carbon and sulfur cycles. Here, we describe a pathway for SQ degradation that involves oxidative desulfurization to release sulfite and enable utilization of the entire carbon skeleton of the sugar to support the growth of the plant pathogen Agrobacterium tumefaciens. SQ or its glycoside sulfoquinovosyl glycerol are imported into the cell by an ATP-binding cassette transporter system with an associated SQ binding protein. A sulfoquinovosidase hydrolyzes the SQ glycoside and the liberated SQ is acted on by a flavin mononucleotide-dependent sulfoquinovose monooxygenase, in concert with an NADH-dependent flavin reductase, to release sulfite and 6-oxo-glucose. An NAD(P)H-dependent oxidoreductase reduces the 6-oxo-glucose to glucose, enabling entry into primary metabolic pathways. Structural and biochemical studies provide detailed insights into the recognition of key metabolites by proteins in this pathway. Bioinformatic analyses reveal that the sulfoquinovose monooxygenase pathway is distributed across Alpha- and Betaproteobacteria and is especially prevalent within the Rhizobiales order. This strategy for SQ catabolism is distinct from previously described pathways because it enables the complete utilization of all carbons within SQ by a single organism with concomitant production of inorganic sulfite.
|
Jan 2022
|
|
I04-Macromolecular Crystallography
|
Olga V.
Moroz
,
Elena
Blagova
,
Andrey A.
Lebedev
,
Filomeno
Sanchez Rodriguez
,
Daniel J.
Rigden
,
Jeppe
Wegener Tams
,
Reinhard
Wilting
,
Jan Kjølhede
Vester
,
Emily
Longhi
,
Gustav
Hammerich Hansen
,
Kristian
Bertel Rømer Mørkeberg Krogh
,
Roland A.
Pache
,
Gideon
Davies
,
Keith S.
Wilson
Diamond Proposal Number(s):
[18598]
Abstract: β-Galactosidases catalyse the hydrolysis of lactose into galactose and glucose; as an alternative reaction, some β-galactosidases also catalyse the formation of galactooligosaccharides by transglycosylation. Both reactions have industrial importance: lactose hydrolysis is used to produce lactose-free milk, while galactooligosaccharides have been shown to act as prebiotics. For some multi-domain β-galactosidases, the hydrolysis/transglycosylation ratio can be modified by the truncation of carbohydrate-binding modules. Here, an analysis of BbgIII, a multidomain β-galactosidase from Bifidobacterium bifidum, is presented. The X-ray structure has been determined of an intact protein corresponding to a gene construct of eight domains. The use of evolutionary covariance-based predictions made sequence docking in low-resolution areas of the model spectacularly easy, confirming the relevance of this rapidly developing deep-learning-based technique for model building. The structure revealed two alternative orientations of the CBM32 carbohydrate-binding module relative to the GH2 catalytic domain in the six crystallographically independent chains. In one orientation the CBM32 domain covers the entrance to the active site of the enzyme, while in the other orientation the active site is open, suggesting a possible mechanism for switching between the two activities of the enzyme, namely lactose hydrolysis and transgalactosylation. The location of the carbohydrate-binding site of the CBM32 domain on the opposite site of the module to where it comes into contact with the catalytic GH2 domain is consistent with its involvement in adherence to host cells. The role of the CBM32 domain in switching between hydrolysis and transglycosylation modes offers protein-engineering opportunities for selective β-galactosidase modification for industrial purposes in the future.
|
Dec 2021
|
|
I03-Macromolecular Crystallography
|
Nicholas G. S.
Mcgregor
,
Chi-Lin
Kuo
,
Thomas
Beenakker
,
Chun-Sing
Wong
,
Wendy A.
Offen
,
Zachary
Armstrong
,
Bobby I.
Florea
,
Jeroen D.
Codee
,
Herman S.
Overkleeft
,
Hans
Aerts
,
Gideon
Davies
Diamond Proposal Number(s):
[24948, 18598]
Open Access
Abstract: Exo-β-mannosidases are a broad class of stereochemically retaining hydrolases that are essential for the breakdown of complex carbohydrate substrates found in all kingdoms of life. Yet the detection of exo-β-mannosidases in complex biological samples remains challenging, necessitating the development of new methodologies. Cyclophellitol and its analogues selectively label the catalytic nucleophiles of retaining glycoside hydrolases, making them valuable tool compounds. Furthermore, cyclophellitol can be readily redesigned to enable the incorporation of a detection tag, generating activity-based probes (ABPs) that can be used to detect and identify specific glycosidases in complex biological samples. Towards the development of ABPs for exo-β-mannosidases, we present a concise synthesis of β-manno-configured cyclophellitol, cyclophellitol aziridine, and N-alkyl cyclophellitol aziridines. We show that these probes covalently label exo-β-mannosidases from GH families 2, 5, and 164. Structural studies of the resulting complexes support a canonical mechanism-based mode of action in which the active site nucleophile attacks the pseudo-anomeric centre to form a stable ester linkage, mimicking the glycosyl enzyme intermediate. Furthermore, we demonstrate activity- based protein profiling using an N-alkyl aziridine derivative by specifically labelling MANBA in mouse kidney tissue. Together, these results show that synthetic manno-configured cyclophellitol analogues hold promise for detecting exo-β-mannosidases in biological and biomedical research.
|
Dec 2021
|
|
Krios III-Titan Krios III at Diamond
|
Diamond Proposal Number(s):
[19832]
Open Access
Abstract: The O-linked β-N-acetylglucosamine modification is a core signalling mechanism, with erroneous patterns leading to cancer and neurodegeneration. Although thousands of proteins are subject to this modification, only a single essential glycosyltransferase catalyses its installation, the O-GlcNAc transferase, OGT. Previous studies have provided truncated structures of OGT through X-ray crystallography, but the full-length protein has never been observed. Here, we report a 5.3 Å cryo-EM model of OGT. We show OGT is a dimer, providing a structural basis for how some X-linked intellectual disability mutations at the interface may contribute to disease. We observe that the catalytic section of OGT abuts a 13.5 tetratricopeptide repeat unit region and find the relative positioning of these sections deviate from the previously proposed, X-ray crystallography-based model. We also note that OGT exhibits considerable heterogeneity in tetratricopeptide repeat units N-terminal to the dimer interface with repercussions for how OGT binds protein ligands and partners.
|
Nov 2021
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Gideon J.
Davies
,
Rhianna J.
Rowland
,
Yurong
Chen
,
Imogen
Breen
,
Liang
Wu
,
Wendy A.
Offen
,
Thomas
Beenakker
,
Qin
Su
,
Adrianus M. C. H.
Van Den Nieuwendijk
,
Johannes M. F. G.
Aerts
,
Marta
Artola
,
Herman S.
Overkleeft
Diamond Proposal Number(s):
[13587, 18598]
Abstract: Gaucher disease (GD) is a lysosomal storage disorder caused by inherited deficiencies in β-glucocerebrosidase (GBA). Current treatments require rapid disease diagnosis and a means of monitoring therapeutic efficacy, both of which may be supported by the use of GBA-targeting activity-based probes (ABPs). Here, we report the synthesis and structural analysis of a range of cyclophellitol epoxide and aziridine inhibitors and ABPs for GBA. We demonstrate their covalent mechanism-based mode of action and uncover binding of the new N- functionalised aziridines to the ligand binding cleft. These inhibitors became scaffolds for the development of ABPs; the O6-fluorescent tags of which bind in an allosteric site at the dimer interface. Considering GBA’s preference for O6- and N -functionalised reagents, we synthesised a bi-functional aziridine ABP which we hoped would offer a more powerful imaging agent. Whilst this ABP binds to two unique active site clefts of GBA, no further benefit in potency was achieved over our first generation ABPs. Nevertheless, such ABPs should serve useful in the study of GBA in relation to GD and inform the design of future probes.
|
Sep 2021
|
|
I04-Macromolecular Crystallography
|
Federico
Sabbadin
,
Saioa
Urresti
,
Bernard
Henrissat
,
Anna O.
Avrova
,
Lydia R. J.
Welsh
,
Peter J.
Lindley
,
Michael
Csukai
,
Julie N.
Squires
,
Paul H.
Walton
,
Gideon J.
Davies
,
Neil C.
Bruce
,
Stephen C.
Whisson
,
Simon J.
Mcqueen-Mason
Diamond Proposal Number(s):
[9948]
Abstract: The oomycete Phytophthora infestans is a damaging crop pathogen and a model organism to study plant-pathogen interactions. We report the discovery of a family of copper-dependent lytic polysaccharide monooxygenases (LPMOs) in plant pathogenic oomycetes and its role in plant infection by P. infestans. We show that LPMO-encoding genes are up-regulated early during infection and that the secreted enzymes oxidatively cleave the backbone of pectin, a charged polysaccharide in the plant cell wall. The crystal structure of the most abundant of these LPMOs sheds light on its ability to recognize and degrade pectin, and silencing the encoding gene in P. infestans inhibits infection of potato, indicating a role in host penetration. The identification of LPMOs as virulence factors in pathogenic oomycetes opens up opportunities in crop protection and food security.
|
Aug 2021
|
|
I04-Macromolecular Crystallography
|
Hermen S.
Overkleeft
,
Sybrin
Schröder
,
Wendy
Offen
,
Alexandra
Males
,
Yi
Jin
,
Casper
De Boer
,
Jacopo
Enotarpi
,
Gijs
Van Der Marel
,
Bogdan
Florea
,
Jeroen
Codée
,
Gideon
Davies
Diamond Proposal Number(s):
[13587, 18598]
Abstract: There is a vast genomic resource for enzymes active on carbohydrates. Lagging far behind, however, are functional chemical tools for the rapid characterization of carbohydrate‐active enzymes. Activity‐based probes (ABPs) offer one chemical solution to these issues with ABPs based upon cyclophellitol epoxide and aziridine covalent and irreversible inhibitors representing a potent and widespread approach. Such inhibitors for enzymes active on polysaccharides are potentially limited by the requirement for several glycosidic bonds, themselves substrates for the enzyme targets. Here we show that non‐hydrolysable trisaccharide can be synthesized and applied even to enzymes with challenging subsite requirements. We find that incorporation of carbasugar moieties, which we accomplished by cuprate‐assisted regioselective trans‐diaxial epoxide opening of carba‐mannal we synthesised for this purpose, yields inactivators that act as powerful activity‐based inhibitors for a‐1,6 endo‐mannanases. 3‐D structures at 1.35 – 1.47 Å resolutions confirm the design rationale and binding to the enzymatic nucleophile. Carbasugar oligosaccharide cyclophellitols offer a powerful new approach for the design of robust endoglycosidase inhibitors, while the synthesis procedures presented here should allow adaptation towards activity‐based endoglycosidase probes as well as configurational isosteres targeting other endoglycosidase families.
|
Apr 2021
|
|